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What are Shapley values?

Shapley values, from cooperative game theory, tell us how much
“credit” should each player in the game get for producing the out-
come by assigning credit based on the marginal contribution A
each player makes when joining the group.
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Alice, Bob, and Celine are farmers who produce 9 bushels of wheat
when working together. Their Shapley values ¢ are their average A
over all 3! permutations of the group order.

Goals for feature explanation

Shapley for feature explanation

When interpreting machine learning models, it is important to con-
sider the full process of producing model output [3]:
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World Features

We can visualize the relationship between properties of the world
Z, the measured features X;, and the model output Y graphically:
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Intepretability can then be framed as two different goals [1]:

= Explaining the model: understanding why the machine learning
model makes a prediction.

= Explaining the world: understanding a real-world mechanism
through the data and model output.

farmers — features: X, Xs, X3

wheat — model output: (X, Xy, X35) =Y

The importance of a feature is how much Shapley value “credit” it
recelves for producing the model output.

How do we “remove” features from the model to compute Shapley
values? Suppose we are computing the Shapley value for group
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conditional Shapley: Ex, v, x,|f(X1, X2, X3)| X| = 4]

interventional Shapley: Ey, x.[f(z1, X2, X3)]

Cotenability and Causality

'z |
: i ;*\j : ;*\j
(a) Conditional Shapley is cotenable (b) Interventional Shapley is causal

= Features are often correlated because they have a shared latent
real-world cause Z: there is a trade-off in breaking or
respecting these dependencies.

= Contenable explanations respect correlations among features:
changes in BMI must also change height or weight. Explains the
world.

= Model-based causal explanations tell us how features intervene
on the model: how does setting blood pressure to 180 affect
predicted mortality? Explains the model.
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Grouping features increases interpretability and moves closer to
satisfying both cotenability and causality.
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NHANES mortality case study

Age
Gender_female
Poverty index

mmm) Systolic BP

mmm) Diastolic BP 4 =
BMI 4 =

White blood cells{ =
mmm) Pulse pressure 4 =
0 1 2 3 4 5 6
mean|SHAP value|) (average impact on model output magnitude)
(a) The importance of blood pressure is spread across systolic, diastolic, and

pulse pressure.
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(b) Removing systolic and diastolic increases the importance of pulse pressure.
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(c) Grouping all blood pressure features increases their relative importance.
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