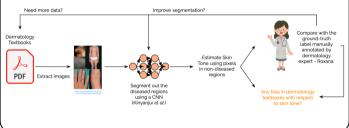
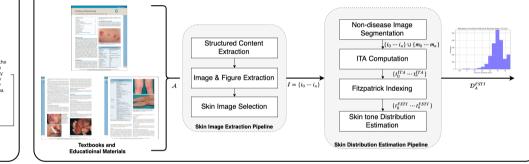


Automated Evaluation of Representation in Dermatology **Educational Materials**



Girmaw Abebe Tadesse. Hannah Kim, Roxana Daneshiou, Celia Cintas, Kush R. Varshnev. Ademide Adelekun, Jules B. Lipoff, Ginikanwa Onvekaba, Veronica Rottemberg, James Zou

Email: girmaw.abebe.tadesse@ibm.com


1. Introduction

- Dermatology materials lack adequate skin color representation [1,2]
- The lack of representation in educational materials may translate to the clinical realm, leading to increased morbidity and mortality [3]
- · Manual skin tone annotation is not feasible for a large corpus of dermatology education materials due to its subjectivity and laborintensive nature

2. Proposed framework

- We propose a unified framework, where academic materials (e.g., in pdf format) are fed as input to be parsed using a corpus conversion service (CCS) [4]
- · Images are then cropped out using the annotations from CCS, and skin images are selected.
- Segmentation of non-diseased skin regions followed by skin tone estimation is applied.

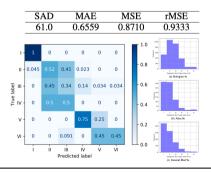
3. Experiments

· Three dermatology textbooks used for validation

Bolognia 4e Atlas 8e General Med 9e

 Non-disease regions are segmented using Mask R- CNN [5] and Individual Typology Angle (ITA) values are computed and mapped to Fitzpatrick skin type indices (FSTI)

ITA Range	FSTI
$ITA > 41^{\circ}$	I
$34.5^{\circ} < ITA \le 41^{\circ}$	п
$28^{\circ} < ITA \le 34.5^{\circ}$	ш
$19^{\circ} < ITA \le 28^{\circ}$	IV
$10^{\circ} < ITA \le 19^{\circ}$	V
$ITA \le 10^{\circ}$	VI


· Performance metrics: sum of absolute difference (SAD), mean absolute error (MAE), mean squared error (MSE), and root mean squared error (rMSE) · Segmentation examples:

· Lack of dark skin images in all textbooks

	Bolognia	Atlas	General Med
GT	11.92%	9.56%	11.78%
Proposed	17.42%	6.82%	7.84%

More results

4. Conclusions

- We proposed a framework that automatically assesses bias in representation of darker skin tones
- Main steps include Automated ingestion academic documents, extracting image contents and guantifying representation across skin tones
- · We validated the framework using three dermatology textbooks and encouraging performance is achieved
- This work has a potential to facilitate the development of trustworthy AI systems in field of dermatology and beyond.

References

- 1. Louie et al., Representations of race and skin tone in medical textbook
- imagery. Social Science & Medicine 202:38-42. 2018
- 2. Lester et al., Absence of skin of colour images in publications of COVID19
- skin manifestations. British Journal of Dermatology. 2020 3. Cormier et al., Ethnic Differences Among Patients With Cutaneous
- Melanoma. Archives of Internal Medicine 166(17):1907-1914. 2006
- 4. Staar et al., Corpus conversion service: A machine learning platform to ingest documents at scale. In Proc. Of KDD, 774-782. 2018
- 5. He et al., Mask R-CNN. CoRR abs/1703.06870. 2017

