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1. Introduction
Clinical genetic testing is a rapidly expanding field, powered by advances in high-throughput genomic sequencing and the increasing availability of
well-curated public databases on sequence variants, population genetics, diseases, etc. One main use case is determining whether the mutations (also
called variants) detected in the genomic sequence of a proband can explain disease status or predict disease risk. Given that genes influence the phenotype
of an individual through highly complex processes, there exists no general model that can conclusively determine the impact of all possible mutations
on the health of the individual. Barring some well-studied variants, the interpretation of most rare sequence variants is a process of weighing multiple
pieces of evidence in favor/against pathogenicity.

2. Current methods
Most of the labs use variant interpretation sys-
tems that are based on ACMG/AMP guidelines.
The rare sequence variants are given one of the
five class labels – [benign, likely benign, uncer-
tain significance, likely pathogenic, pathogenic]
based on evidence spanning categories like pop-
ulation genetics, sequence observations, clini-
cal observations, computational predictors etc.
The variants are interpreted using heuristic rules
and/or points based systems. While the heuris-
tic rules and the points are based on consensus
opinion among geneticists, we believe there is
scope for data-driven explicit modeling.

3. Goals
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We aim to learn interpret-able classification models for rare sequence
variant interpretation from data on previously interpreted variants.
Each variant in the dataset is described by 195 feature variables that
summarize information such as variant’s biochemical consequences,
data on the prevalence of the variant in healthy populations, manual
(human) interpretations of the variant in clinical and biomedical
literature, etc.
We chose to use the language of directed graphical models because
they are highly interpretable and provide an explicit representation
of the modeling assumptions. We were also motivated by the possi-
bility of extracting symbolic explanations from these models, being
able to perform sensitivity analysis etc.

4. Models
• The first model we considered was the Categorical Naive Bayes model. We trained this model as a baseline PGM against which other models could

be compared. We know that the strong independence assumptions made by the model are violated by the features in our dataset. In particular,
the features that belong to the same exclusion group exhibit strong correlation and are therefore not independent given the class variable. As an
example, there are several features related to minor allele frequency (MAF) thresholds (low, medium, high, etc.) that belong to the same exclusion
group. A high MAF obviously rules out features for other thresholds.

• The next model we considered is the Tree Augmented Naive Bayes (TAN) model. The TAN model preserves the appealing properties of the
Naive Bayes model (such as computational efficiency and the Markov blanket of the class variable including all features) while relaxing the strong
independence assumptions. It allows extra edges between features based on conditional mutual information.

• The last model we considered is also in the spirit of the Naive Bayes model and the TAN model and retains the class variable as the parent of all
feature nodes. However, it allows a richer set of dependencies between feature variables than the one extra parent allowed by the TAN model. For
this purpose, we used the PC algorithm to learn a DAG among the feature variables. We augmented the DAG returned by the PC algorithm by
adding edges based on clinical genetics domain knowledge.
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5. Results
• The baseline Naive Bayes model clearly makes strong conditional independence assumptions

that are not supported by the dataset and has the lowest performance.

• Relaxing the strong independence assumptions in the TAN model leads to a significant improve-
ment in the performance. The TAN model captured interesting correlations between features
such as “coverage in ExAc” and “absent in gnomAD”.

• The use of higher level features and encoding of genetics domain knowledge in PCNB model
lead to a slight improvement in performance. We believe that complex reasoning involving
“exclusion groups” may be main factor causing saturation of performance.

Model accuracy f1 score
NB 0.8387 0.8390
TAN 0.9330 0.9330
PCNB 0.9497 0.9502

Class NB TAN PCNB
benign 0.80 0.93 0.94
likely benign 0.79 0.92 0.95
uncertain significance 0.91 0.96 0.97
likely pathogenic 0.44 0.51 0.56
pathogenic 0.75 0.90 0.86

6. Conclusions
• Our experiments demonstrated that clas-
sifiers based on graphical models can per-
form well at the task of variant interpre-
tation.

• By encoding our classifiers as PGMs were
able to derive highly interpretable and
transparent models.

• Further improvement in performance
would require a more detailed encoding of
the domain knowledge underpinning vari-
ant interpretation.

• Datasets that are annotated in an inde-
pendent fashion will be a key enabler of
automated learning of graphical models.


