Machine Learning with Electronic Health Records is vulnerable to Backdoor Trigger Attacks

Byunggill Joe,¹ Akshay Mehra,² Insik Shin,¹ Jihun Hamm² ¹KAIST, ²Tulane University

Summary

- <u>**Objective</u>**: To attack models' predictions for Electronic Health Records (EHR) exploiting backdoor trigger.</u>
- Limitation of existing work: Trigger patterns on inputs are easy to detect without taking account into statistical characteristics of EHR features [1]. It leads
- Trigger with temporal dependency
- Key idea: Leveraging temporal covariance of EHR.
- Input: $X = [x_1, \dots, x_{17}]^T$, (48x17)
- **Covariance:** $C_i = E[(x_i \mu_i)(x_i \mu_i)^T], (17x17)$
- **Sampling trigger:** $t_i \sim N(0, C_i)$, (1x17)
- Triggering with Mahalanobis normalization

$$d_{\text{Mahal}}(t_i) = \sqrt{t_i^T C_i^{-1} t_i} \qquad x_i \leftarrow x_i + \frac{2}{d_{\text{Mahal}}(t_i)} t_i$$

- to a failure of the attack.
- **Our approach**: We generate triggers based on temporal dependency for imperceptibility.
- <u>Key results</u>: We demonstrate the first successful backdoor attack on EHR with imperceptible triggers, achieving an attack success ratio of 97% on Logistic Regression, MLP, LSTM.

Background & Motivation

 <u>Backdoor Attacks</u>: An attacker can subvert predictions of a model by adding a trigger to inputs. To do this, the attacker poisons a small proportion of the model's training data.

- Example data (1x2)
 - The number of time stamp = 2
 - The number of features = 1

- <u>Settings</u>

1.2

- Victim models: Logistic Regression, MLP, LSTM.
- Attack target: False alarming attack.

(Non urgent patient \rightarrow Urgent patient)

Result 1) Attack success ratio (ASR)

• ′	Trigger	strengt	h	2	(
 -					

Poisoned data set
ML algorithm

Imperceptible trigger on EHR: However, specifically in EHR, naive triggers are easy to detect.

(1) Invalid changes over time (2) Invalid categorical values

Our approach

- Victim dataset & task: Mortality prediction dataset from MIMIC-III [2,3]. It contains EHRs of 48 hours and the model's task is to predict whether a patient

·11 · 1

will survive or perish.

- Our (Attacker's) goal: To subvert test-time decisions of the predictor with a trigger. *The trigger should be imperceptible*.
- Cause of perceptibility: Naive triggers do not regard how much a feature can vary over time.

(A) Low variation allowed

(B) *High* variation allowed

Conclusion

We find ML with EHRs is vulnerable to backdoor attack, introducing an effective attack with temporal dependence trigger.
This highlights importance of studying trustworthy AI for healthcare.

[1] Chen, X.; Liu, C.; Li, B.; Lu, K.; and Song, D. 2017. Targeted backdoor attacks on deep learning systems using data Poisoning.

[2] Harutyunyan, H.; Khachatrian, H.; Kale, D. C.; Ver Steeg, G.; and Galstyan, A. 2019. Multitask learning and benchmarking with clinical time series data. Scientific data 6(1): 1–18.

[3] Johnson, A. E.; Pollard, T. J.; Shen, L.; Li-Wei, H. L.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L. A.; and Mark, R. G. 2016. MIMIC-III, a freely accessible critical care database. Scientific data 3(1): 1–9.