Machine Learning with Electronic Health Records Is vulnerable
to Backdoor Trigger Attacks
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Summary

- ODbjective: To attack models’ predictions for

Electronic Health Records (EHR) exploiting
backdoor trigger.

- Limitation of existing work: Trigger patterns on

Inputs are easy to detect without taking account into
statistical characteristics of EHR features [1]. It leads
to a fallure of the attack.

- Qur approach: We generate triggers based on

temporal dependency for imperceptibility.

- Key results: We demonstrate the first successful

backdoor attack on EHR with imperceptible triggers,
achieving an attack success ratio of 97% on Logistic
Regression, MLP, LSTM.

- Trigger with temporal dependenc

» Key idea: Leveraging temporal covariance of EHR.
e Input: X = [xq,...,x17]", (48x17)

+ Covariance: C; = E[(x; — uy) (x; — u)'], (a7x17)

« Sampling trigger: t;~N(0,C;), (1x17)

* Triggering with Mahalanobis normalization
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» Example data (1x2)
* The number of time stamp = 2
* The number of features = 1
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Background & Motivation

Backdoor Attacks: An attacker can subvert
predictions of a model by adding a trigger to inputs.
To do this, the attacker poisons a small proportion of
the model’s training data.
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Imperceptible trigger on EHR: However, specifically
In EHR, naive triggers are easy to detect.

(1) Invalid changes over time (2) Invalid categorical values

&2 Backdoor trigger

» (Class 0
=15 Class |

L !ul

5 data of class 0

Poisoned data set
D ML algorithm

ol

: _ Name Gender Height
Helght Alice Female (0) | 167
Time (hour) Bob Male (1) | 176
Naive trigger t Naive trigger t
e.g. t~N(0,1) e.g.t~N(0,1)
Detectable Name Gender Height
trigger input! Alice | Female (1.5)| 167
Time (hOUI’) Bob Male (2.5)| 176
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Results
- Settings

* Victim models: Logistic Regression, MLP, LSTM.
» Attack target: False alarming attack.

Our approach

Victim dataset & task: Mortality prediction dataset
from MIMIC-III [2,3]. It contains EHRS of 48 hours
and the model’s task is to predict whether a patient
will survive or perish.

Our (Attacker’s) goal: To subvert test-time decisions
of the predictor with a trigger. The trigger should be
Imperceptible.

Cause of perceptibility: Naive triggers do not
regard how much a feature can vary over time.
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- Result 1) Attack success ratio (ASR)
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- Result 2

_ After triggered
Before triggered

(strenath=2.0)

* Qur trigger does not induce
perceptible changes In the
original input. (Left)

* Qur trigger reflects temporal
dependence. (Below)
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Conclusion

* We find ML with EHRs is vulnerable to backdoor attack,
Introducing an effective attack with temporal dependence trigger.

* This highlights importance of studying trustworthy Al for
healthcare.
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