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Abstract

Experiments

Deep neural networks have been shown to be 
vulnerable to backdoor attacks, which could be easily 
introduced by means of the model training procedure. 
The exact impact of backdoors is not yet fully 
understood in complex real-world applications, such 
as in medical imaging where misdiagnosis can be 
very costly. Our paper explores the impact of 
backdoor attacks on a multilabel disease classification 
task using chest radiography, with the simple 
assumption that the attacker need manipulate only 
the training dataset to execute the attack.  We show 
how explainability can be used to identify spatially 
localized backdoors in inference time.
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AUROC-TT. ‘TT’ stands for ‘Triggered image, Triggered label’.  It 
measures prediction of the infected labels of infected (triggered) images, 
but does not provide sufficient information on how well the model 
misclassifies the infected images, away from the true labels.

AUROC-TN. ‘TN’ stands for ‘Triggered image, Normal label’. It measures 
misclassification, by backdoored network, of infected images away from 
the true (normal) labels. A lower score implies more efficient backdooring.

• Dataset: 112,120 Anonymised, HIPAA-compliant chest 
radiographs from NIH Chestx-ray8 dataset [1].  The true label of 
each image is a binary vector indicating the presence (or 
absence) of 14 different diseases.

•   Model: DenseNet-121

•   Methodology: The attacker has special access to the machine 
learning dataset. They insert images prior to training, and need 
not be involved in the training procedure. The user will 
unknowingly trusts the predictions of the infected model, if it 
achieves some minimum performance on an independent test set 
using some metric.

A backdoor trigger may be 
applied to a clean image x by 
means of function p(x, r, m),

to obtain the infected image 
x’, where r represents the 
trigger, m denotes the trigger 
mask that takes a value of 1 
at the trigger location and 0 
elsewhere, and • is the 
element-wise product.

AUROC-NN.‘NN’ stands for ‘Normal 
image, Normal label’. It measures 
prediction the true labels of clean images 
by backdoored model. 

Figure shows the computed saliency maps for the clean and infected 
versions of an example image, at epochs 1, 4, and 12 (top to bottom). 
Columns 1 and 2 are taken with respect to the last convolutional layer, 
while 3 and 4 are taken with respect to  the middle convolutional layer. 
We observe that in clean images  of column 1, the heatmap focuses 
less on the location of the backdoor trigger in column 2. We see in 
columns 3 and 4 that utilising the middle layer for Grad-CAM gives 
more fine-grained backdoor trigger localization. The localization 
heatmap narrows on the center of the image, where the trigger is 
located in column 4. This is more noticeable at epochs 1 and 4, where 
there is less overfitting. The increased localization in the middle of the 
network is understandable since the backdoor trigger pixels can be 
considered as low level features, and thus may be better detected in 
the earlier layers of the network. This suggests that explainability can 
play a complementary role with robustness, since GradCAM shows 
differences between the saliency maps of clean and infected images, 
and can help radiologists in questioning model predictions when the 
saliency maps and predictions seem unreasonable.  

We examined the role of 
explainability in the context of 
backdoor attacks using Gradient 
Class Activation Mappings 
(Grad-CAM)[2]. Grad-CAM 
calculates derivative of 
activations with respect to a 
convolutional layer of the neural 
network to compute saliency 
maps, where more important 
regions for the classification are 
indicated by red and less 
important regions are in blue. We 
apply Grad-CAM with respect to a 
middle layer of the DenseNet-121 
(layer 207 of 287). We compare 
with the activations with respect 
to last conv layer.
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