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Introduction

Modern neural networks are highly uncalibrated. It poses a significant challenge for safety-
critical systems to utilise deep neural networks (DNNs), reliably. Many recently proposed
approaches have demonstrated substantial progress in improving DNN calibration. How-
ever, they hardly touch upon refinement, which historically has been an essential aspect
of calibration. This paper presents a theoretically and empirically supported exposition
for reviewing a model’s calibration and refinement. We show the breakdown of expected
calibration error (ECE), into predicted confidence and refinement. We show through em-
pirical evaluations of many state of the art calibration approaches on standard datasets
that many calibration approaches with the likes of label smoothing, mixup etc. lower the
utility of a DNN by degrading its refinement.

Related Work

• Refinement and calibration have often been studied together in the field of statis-
tics(Gneiting, Balabdaoui, and Raftery 2007), meteorology(Murphy and Winkler
1977), medicine(Tversky and Kahneman 1974) etc.

• Some examples of existing calibration methods are ERL(Pereyra et al. 2017),
LS(Müller, Kornblith, and Hinton 2019), MX(Thulasidasan et al. 2019).

• Approaches discussing are but not limited to CFN(Corbière et al. 2019), CRL(Moon
et al. 2020).

• Metrics used for measuring calibration are ECE, OE(Naeini, Cooper, and Hauskrecht
2015), Brier score(Brier 1950).

• Refinement metrics are AUROC, AUPR, FPR@95%-TPR.

Calibration & Refinement

The figures above displays hypothetical classification scenario for 3 classifiers(50% accu-
racy for each). In (a), we have a case where calibration is good but the refinement is poor.
In (b), refinement is good but the calibration is bad. In (c), we have a scenario where
calibration and refinement both are good. (c) is the ideal case which we wish to achieve.
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ECE & AUROC

ECE is a calibration metric widely used in measuring calibration of a model.
It is defined as:

ECE =
∑
m

|Bm|
n

[|E [A]m − Cm|] (1)

where, average confidence (Cm) and accuracy (Am) is computed after
splitting the predictions in to predefined m bins based on the predicted
confidence and n are the total number of predicted samples.
Assumptions: We employ the following assumptions

• The number of bins, m = 1, for computing ECE. Though, this assump-
tion can be relaxed and the final derivation will still hold.

• E [A] < C. Model is over-confident and less accurate. This scenario
describes the problem of modern DNNs.

AUROC captures the concept of ordinal ranking nicely. It denotes the ex-
pectation that a uniformly drawn random positive is ranked higher than a
uniformly drawn random negative sample. AUROC (r), is formally defined
as

r =

∫ 1

0
tpr dfpr, (2)

where, tpr is the true positive rate and fpr is the false positive rate. The
maximum value that r can attain is 1 representing an ideal ranking sce-
nario.
We build on the work of (Hernández-Orallo, Flach, and Ferri 2012) to show
that,

ECE = αC − βr − γ, (3)

where α ≥ β > 0 and γ ≥ 0.

Results

We utilize LS:label smoothing, MX:mixup, ERL:entropy regularisation as
calibration methods. As refinement methods, we employ CRL:correctness
ranking loss and CFN:confidence network. We perform the joint evaluation
on CIFARs and STL-10 datasets. The DNN we use is the VGG-16 with
batch normalisation.

Table 1: CIFAR-100

Method Accuracy(↑) ECE(↓) AUROC(↑)
Baseline 72.07 ± 0.2 19.12 ± 0.13 85.18 ± 0.21

ERL 72.40 ± 0.19 16.8 ± 0.1 85.19 ± 0.3
Mixup 73.12 ± 0.18 6.87 ± 1.81 82.96 ± 0.27
LS 72.92 ± 0.43 5.76± 0.56 81.49 ± 0.27

CFN 72.07 ± 0.2 13.95 ± 2.7 86.0 ± 0.18
CRL 71.5± 0.2 12.5 ± 1.1 88.11± 0.16

Table 2: CIFAR-10

Method Accuracy(↑) ECE(↓) AUROC(↑)
Baseline 92.96 ± 0.2 5.38 ± 0.15 92.5 ± 0.01

ERL 93.23 ± 0.01 4.41 ± 0.07 92.11 ± 0.4
Mixup 93.46± 0.18 4.16 ± 1.2 86.72 ± 0.8
LS 93.07 ± 0.2 7.4 ± 0.18 82.36 ± 1.23

CFN 92.96 ± 0.2 4.1 ± 0.2 92.55 ± 0.1
CRL 93.05 ± 0.37 1.87± 0.21 92.59± 0.42

Results

Table 3: STL-10

Method Accuracy(↑) ECE(↓) AUROC(↑)
Baseline 81.61 ± 0.2 11.55 ± 0.19 85.53 ± 0.7

ERL 82.38 ± 0.29 9.6 ± 0.41 86.57 ± 0.16
Mixup 82.94± 0.08 3.46± 0.33 85.9 ± 0.14
LS 81.99 ± 0.45 5.64 ± 0.02 85.13 ± 0.3

CFN 81.61 ± 0.2 9.23 ± 1.02 86.64± 0.4
CRL 79.5 ± 0.4 6.34 ± 1.19 85.29 ± 0.68

Observations

• Calibration approaches provide better calibration and refinement based approaches
provide better refinement.

• Calibration based approaches perform poorly in comparison to the uncalibrated
baseline in terms of refinement. This highlights a significant drawback in these ap-
proaches which has not yet been highlighted.

• Refinement based approaches provide good calibration. This provides empirical
evidence in support of the relationship derived between ECE and AUROC.

Summary

• We have highlighted the connection between Expected Calibration Error, a calibra-
tion metric, and area under the ROC curve computed for a classification task. This
result forms the motivation for our cross-domain evaluation. Based on the derived re-
lationship, we discuss the cases where methods focusing on one task can positively
or negatively impact the other.

• We evaluate respective state of the art methods which are studied in isolation under
a unified setting and showed that refinement based approaches improve calibration.

• We also showed that calibration based approaches perform poorly on refinement.

Future Work

• Understanding the reasoning behind the drop in refinement for calibration methods.

• Extend evaluation to more deep neural network architectures and datasets.

• Device refinement based approach better at calibration than the existing calibration
approaches.

• Study the refinement-calibration trade-off in scenarios where there is data shift.


