
Establishing appropriate trust between healthcare 
practitioners and machine-learning models is 
critical to enabling automation of medical 
processes by models with human-level or 
super-human performance, thus improving 
outcomes and lowering costs [5]. Potential issues:
● Under-trust: the healthcare practitioners may 

unduly reject the prediction provided by the 
machine-learning model. 

● Over-trust: medical practitioners may default to 
an automated prediction that turns out to be 
imperfect. 

In both cases, a more appropriate level of trust may 
be established by accurately identifying and 
communicating a case-specific confidence in the 
model’s prediction [5]. 

“I predict the value μ”       
  

“I predict the value μ ± 2σ” 

All problems and techniques discussed below are 
in the context of regression problems and for 
arbitrary models 

Evaluation Metrics
How can a model that outputs means and variances 
be evaluated?
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Core contributions:

1. A novel combination of fitted random priors, 
regression to variance, and uncertainty 
calibration using isotonic regression

2. Experimental validation of the usefulness of 
this technique in accurately assessing 
uncertainty

3. Experimental evidence that the technique 
correctly distinguishes between aleatoric risk 
and epistemic uncertainty

Open questions include comparing to other methods 
for modeling uncertainty, such as ensemble 
methods, and adapting to classification problems.
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Aleatoric Risk Epistemic Uncertainty

Clinical 
Applicability

Why distinguish between aleatoric risk and 
epistemic uncertainty? 

Patient 1: 175 ± 91, with 64% of the uncertainty 
being epistemic. 

This is a point where the mean estimate could be 
wrong by a large margin, mostly because the 
model simply does not have enough data on similar 
patients. In this case, the clinician may defer to 
their own experience and insights or seek more 
definitive testing and data collection. 

Patient 2: 213 ± 121, with 98% of the 
uncertainty being aleatoric.

For this patient, there have been many similar 
patients in the data, so the mean value is quite 
accurate, but the outcome for the patient is still 
highly uncertain. In this case, it is best that the 
clinician use the mean estimate provided by the 
model and communicate with the patient what 
additional factors (such as behavioral choices) may 
affect their outcome. 

Patient 3: 113 ± 48, with 77% of the uncertainty 
being epistemic. 

The model is already much more confident than 
average, and additional data on similar patients 
might further improve the quality of the prediction.

 

Total Uncertainty

(Chance-based) (Knowledge-based)

Inspiration from Bayesian modeling:
maximize the likelihood of a test set 
under a model 

 
 

Outputs are independent 
of each other

Notational & 
computational reasons

 

The mean performance (vertical bar) on our evaluation 
metric shows that combined method is more accurate 
than either. Aleatoric-Only data could not be plotted 
due to some 0-uncertainty estimates producing 
infinitely negative performance values.

Diabetes Progression Dataset [2]: 
a regression problem, 442 instances, 10 features

● Ablation Study on Log-Likelihood Performance

● Out-of-Distribution Experiment

● Distinguish Aleatoric Risk and Epistemic 
Uncertainty

Fitting Random Priors: Estimate Epistemic 
Uncertainty [1]

Regress to Variance: Aleatoric Risk Target [3]
○ (Predicted - True)² - Epistemic Uncertainty
○ Clip negative values at zero

Uncertainty Calibration: Improve Accuracy and 
Generality of Aleatoric Risk Estimates [6]

○ Isotonic Regression:
Predicted variance → True error

○ Demonstration: UCI Wisconsin Breast Cancer 
(Diagnostic) Dataset [7]

Calibration shifts the estimated uncertainty (x-values) 
so they agree with empirical errors (y-values).


