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Abstract

Machine learning (ML) for biomedical research is one of the
fastest growing research areas in the world today. For NLP
specifically, free-text healthcare reports are an important re-
source whose processing can contribute potentially to patient
diagnosis, treatment, and management. However, the inability
to explain the outputs of ML algorithms is currently a barrier
to the use of these models in a clinical setting. We present a
method that uses the ontologies and knowledge-bases in the
Unified Medical Language System (UMLS) to verify and ex-
plain the output of biomedical ML models. Our verifier takes
as input the results from an ML model, and uses the UMLS
to correlate the results of the task with the confidence of the
model for each result. We applied this architecture to two
tasks using textual cancer pathology reports: ICD-O topog-
raphy classification, and named entity recognition. For the
former, we identified that the presence of certain entities in
a report is inversely related to the model’s confidence val-
ues; while, for the latter, we identified categories of errors
related to lower confidence values. Our approach, therefore,
not only verifies the accuracy of ML model results, but pro-
vides explanations that may be used to improve model design
and performance.

Introduction
Recent advances in Machine Learning have unlocked data
processing capabilities that were hitherto very limited or not
possible. The benefits of applying these algorithms to med-
ical research have led to ground-breaking results in medi-
cal imaging (Erickson et al. 2017; Ravı̀ et al. 2016), dig-
ital health (Triantafyllidis and Tsanas 2019), and insights
extraction from textual data (Townsend 2013), among oth-
ers. For textual data specifically, current efforts include:
text mining from biomedical literature (Lee et al. 2020;
Deng et al. 2019; Sheikhalishahi et al. 2019), text min-
ing from free-text reports (Huang, Altosaar, and Ranganath
2020; Yala et al. 2017), categorizing findings in pathology
and radiology reports (Imler et al. 2013; Saib et al. 2020;
Pons et al. 2016), and generating structured information
from free-text reports (Kreimeyer et al. 2017).
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Despite the impressive results of machine learning re-
search in healthcare, there remains a barrier to the deploy-
ment of these models in clinical settings and much of these
efforts do not go beyond research and archival purposes (He
et al. 2019; Wiens et al. 2019). The black-box nature of ma-
chine learning models is the major impediment to trusting
the results they output (Mittelstadt, Russell, and Wachter
2019; Tjoa and Guan 2020). This has spawned the field of
explainable-AI (XAI), which aims to create models that are
transparent and whose results can be explained and under-
stood (He et al. 2019). Current approaches range from: cre-
ating visualizations in order to understand the inner work-
ings of the model (Karpathy, Johnson, and Fei-Fei 2015);
analyzing features by isolating the contribution of individ-
ual features (Cotton 2017); intrinsically interpreting and ex-
plaining models through reasoning (Cotton 2017); and ret-
rospectively justifying and explaining the output of the mod-
els (Danilevsky et al. 2020). Our focus is on the retrospective
evaluation of model results, and we investigated this using a
stable, accurate, and trusted biomedical standard, the Uni-
fied Medical Language System - the UMLS (Bodenreider
2004a).

We developed a novel model-agnostic architecture that
applies an industry standard knowledge repository, the
UMLS, to perform the role of a verifier by retrospectively
validating and/or explaining the output from a machine
learning model, thus providing a level of interpretability to a
model’s outputs. Depending on the machine learning task at
hand, the UMLS-based verifier applies different terminolo-
gies to provide further information on an output-by-output
basis of the results of the model. A final report is then gener-
ated, and this report consists of information from the UMLS
that supports or contradicts the results of the model. We
evaluated this architecture on two tasks, ICD-O topogra-
phy classification and named entity recognition (NER) on
cancer pathology reports; with the National Cancer Insti-
tute metathesaurus (NCIm) used for the former, and six-
teen other terminologies used for the latter. Our results show
that for classification, the presence of certain entities is in-
versely proportional to the model’s confidence values; while
for NER, the model’s accuracy can be determined on an
entity-by-entity basis, and even categorized, and these cat-



egories then correlated to the model’s confidence values. To
the best of our knowledge, this is the first attempt to use the
UMLS in a model-agnostic architecture, to not only iden-
tify inaccuracies in the results of a machine learning model,
but to correlate observations from the UMLS to a model’s
confidence values.

Related Work
Due to the high level of accountability needed within the
medical domain, the requirement to justify machine learn-
ing model reliability is mandatory (Tjoa and Guan 2020).
However, the existing formal guidelines and generally ac-
cepted practices for explainability and transparency are lim-
ited (Mittelstadt, Russell, and Wachter 2019).

One class of solutions involves examining models for po-
tential bias (Wiens et al. 2019) and evaluating the system rig-
orously before deployment (Wiens et al. 2019), since model
accuracy alone does not ensure that a model will gain clin-
ical acceptance (Stultz 2019). For example, the detection of
osteoporosis by deep learning models, three years before ac-
tual diagnosis, from an analysis of MRI scans was supported
further by the explanation of the specific patterns that the
model detected, and their association to the resulting diag-
nosis (Kundu et al. 2020). Additionally, a study on the use
of convolutional neural networks (CNNs) to classify patient
phenotypes showed that the results could be interpreted by
computing the saliency of the inputs, which is a method sim-
ilarly used in rule-based approaches that rely on text analysis
and knowledge extraction (Gehrmann et al. 2017).

Another class of solutions is the integration of knowledge-
based tools with machine learning models, in order to com-
bine the interpretability of the former with the high effi-
ciency of the latter (Holzinger et al. 2017). Examples of
such systems include: the combination of the rule-based
Clinical Text Analysis and Knowledge Extraction System
(cTAKES) and Logistic regression (Gehrmann et al. 2017);
and the combination of rule-based feature engineering and
domain knowledge-infused CNNs for clinical text classifi-
cation (Yao, Mao, and Luo 2019). The knowledge source
can be either custom ontologies and taxonomies for ex-
plainability (Arrieta et al. 2019; Arya et al. 2019), such as
the healthcare-centric explanation ontology by (Chari et al.
2020), or industry standard ontologies and taxonomies such
as the Unified Medical Language System (UMLS) (National
Library of Medicine 2020).

The UMLS, a repository of millions of names for about
a million medical concepts with tens of millions of rela-
tions among these concepts from 216 families of biomed-
ical terminologies (National Library of Medicine 2020;
Bodenreider 2004b), has been heavily used within the clin-
ical NLP domain (Humphreys, Del Fiol, and Xu 2020), in
the projection of word embeddings onto interpretable lower
dimensional spaces (Rothe, Ebert, and Schtze 2016) and in
the development of hybrid models (Faralli et al. 2016).

Despite the positive steps taken towards a solution by the
above approaches, significant limitations still remain regard-
ing adequately solving the problem of trust in machine learn-
ing systems for healthcare (Ching et al. 2018). Efforts to de-
velop high-level interdisciplinary guidelines for responsible

AI in healthcare have thus far resulted in the development
of industry standards for reasoning and data storage (such as
the terminologies in the UMLS), but not regarding the devel-
opment of machine learning algorithms themselves. Also,
examining models for potential bias and evaluating the sys-
tem rigorously before deployment leave a lot of the machine
learning trust problems to be handled intrinsically (either
by model design or system architectures), which in some
cases will result in a situation of the fox guarding the hen-
house. Additionally, with the architectures of machine learn-
ing models becoming more and more complex, with deeper
and deeper layers, we are decades away from an intrinsic so-
lution, yet healthcare systems are needed now. Finally, com-
bining the interpretability of knowledge-based tools with the
high efficiency of machine learning models is a safe middle-
ground, that can be used to retrospectively justify and ex-
plain the output of these models (Danilevsky et al. 2020).
However, the choice of the knowledge source is key. While
the use of custom knowledge sources (Arrieta et al. 2019;
Arya et al. 2019) achieves the desired goal, they lack the
trust inherent in industry standard knowledge sources, such
as the UMLS that integrates and distributes the resources
associated with key terminology, classification, and coding
standards (National Library of Medicine 2020). On the other
hand, due to the high calibre of the medical experts, health-
care documentation (industry standards, policies, guidelines,
and laws), and institutions (public, private, academic, re-
search, and medical) that are involved in the construction
of the terminologies in the UMLS, it has become the health-
care industry’s most trusted repository, and is, therefore, a
well justified knowledge source with which to verify the re-
sults from machine learning models.

UMLS-based Verification of Machine
Learning Model Outputs

We focused on the task of retrospectively justifying and ex-
plaining the output of machine learning models, where the
UMLS is the expert knowledge-base with which to verify
model outputs. The proposed architecture of such a system
is shown in Figure 1.

Figure 1: An architecture of the UMLS based verifier

In the architecture shown in Figure 1, the processing be-



gins in Task Identifier, where the purpose of the system is de-
termined. The task at hand can be classification, named en-
tity recognition, information extraction, etc. The input into
the system, Textual Biomedical Data, undergoes the text pre-
processing procedures in Text Preprocessing that are appro-
priate for the task identified. The results from this are then
fed into the ML Model, whose black-box nature is high-
lighted in the figure. Finally, the output from the ML Model
passes on to the UMLS Verifier that generates a Report on
the status of each of the model outputs, whether consistent or
contradictory. The UMLS Verifier uses various terminologies
(such as the CUI, SNOMEDCT US, NCI, GO, and HPO) to
reach its conclusions.

In practice, the UMLS-based verifier functions by taking
raw text as input and, through medical concept extraction,
obtains both the extracted medical entity and its Concept
Unique Identifier (CUI). The CUI is then mapped to the ter-
minologies associated with the task being performed, and
if the mapping produces a concept, then further analysis is
done on that concept. Conversely, if the mapping does not
produce a concept, then it implies that the CUI is not associ-
ated with that terminology. The further implications of this
are explained below for the classification and NER tasks.

In order to verify the consistency, or lack thereof, of the
topographical ranges within a pathology report, the CUI for
each extracted entity is mapped to the National Cancer Insti-
tute (NCI) terminology in order to obtain an NCIt code. The
NCIt code is then used to obtain the entity’s given label and
synonyms. These, together with the NCIt code, are matched
to the NCI’s documented mappings of NCIt codes and la-
bels to ICD-O topography codes, in order to obtain the most
likely topographical range for that entity. This is repeated for
every entity in the report, and results in a listing of all enti-
ties that have NCIt codes and their associated topographical
range.

When verifying whether the correct tag has been assigned
to an entity by the NER model, the entity’s CUI is mapped to
various terminologies to verify different tags. In cases where
the terminology is an ontology instead of a knowledge-base,
the CUI is first mapped to the ontology, and an ontology-
specific code of the resulting concept, if available, is then
used to obtain that concept’s top-level concept. In this case,
a single ontology can be used to verify different tags. For ex-
ample, when using the SNOMED-CT ontology (which has
nineteen top-level concepts) to verify an Anatomy tag, a code
is obtained from the CUI-to-SNOMED-CT mapping, and if
the top-level concept of this code is found to be Body Struc-
ture, then the Anatomy tag is considered to have an explain-
able basis. The current version uses sixteen terminologies
from the UMLS metathesaurus for NER verification.

Materials And Methods for Evaluation of
Architecture
We carried out an evaluation of the architecture shown in
Figure 1 using two tasks: ICD-O topography classification
and named entity recognition (NER).

For ICD-O topography classification, we were interested
only in the topography (primary tumor site) in a pathology
report. In the evaluation of the architecture for this task,

we used 1964 unstructured and anonymized breast cancer
pathology reports obtained from public and private health
care laboratories across South Africa. The ground-truth cod-
ing for each report is based on manual annotations by expert
human coders, and these codes formed the labels for the
classification models (Saib et al. 2020). The deep learning
model used was the Multi-Task Convolutional Neural Net-
work (MT-CNN) with hard parameter sharing, which shares
the hidden layers of the CNN across all tasks, while re-
taining task specific output layers for the different related
tasks (Ruder 2017). MT-CNNs were preferred for this task
because they have been shown to improve on the perfor-
mance of single-task deep neural networks when applied
to information retrieval and classification of primary tumor
site and laterality (Yoon, Ramanathan, and Tourassi 2016).
During classification, the most salient 1400 TF-IDF features
were used to filter the corpus, thus allowing for the reten-
tion of the relevant words in each report (Saib et al. 2020).
Finally, though the results from the MT-CNN included clas-
sification both by primary tumor site (topography) and by
tumor cell origin (morphology), we only included the for-
mer in the evaluation.

For Named Entity Recognition (NER), we were inter-
ested in verifying the tags assigned to the entities in a
pathology report. When evaluating the architecture for NER,
we used unstructured and anonymized breast, small intes-
tine, and large intestine cancer pathology reports. The deep
learning model used was HunFlair (Weber et al. 2020),
which uses a pre-trained BiLSTM-CRF model that incor-
porates character-level contextual embeddings of (Akbik,
Blythe, and Vollgraf 2018), and FastText word embed-
dings (Bojanowski et al. 2017) which are based on the Skip-
gram model as described in (Mikolov et al. 2013). This
method was selected because the use of such embeddings
enhances model performance over a variety of tasks in-
cluding NER (Akbik, Blythe, and Vollgraf 2018), (Akbik,
Bergmann, and Vollgraf 2019), (Peters et al. 2017), (Pe-
ters et al. 2018), (Wiedemann, Jindal, and Biemann 2018),
(Zhai, Nguyen, and Verspoor 2018). Since the model is al-
ready pre-trained on 23 biomedical NER corpora, for five
different entity types (Disease, Chemical, Gene, Cell line
and Species) (Weber et al. 2020), it was directly applied to
extract and label entities in the given reports.

The knowledge source used during the verification and
explanation was the 2020 release of the UMLS metathe-
saurus, with the QuickUMLS tool (Soldaini and Goharian
2016) used to extract medical concepts (including multi-
word medical terms) from text. For topography verification,
a single terminology, the National Cancer Institute (NCI)
was used, where a topographical range was identified for
entities in the pathology report, and then consistency across
topographical ranges was sought for the entire report. On
the other hand, multiple terminologies that were associated
with different tags were used to verify the NER results. On
an entity-by-entity basis, a mapping was performed across
the different terminologies in order to identify which termi-
nology an entity is associated with. The label and properties
of that entity within its associated terminology were then
used to explain the agreement with, or contradiction to, the



tag assigned by the NER model.

Results
Due to space limitations, we present only a summarized ver-
sion of the results. For the ICD-O topography classification,
as shown in Table 2 in the appendix, we found that the to-
pographical range of breast cancer, C50, obtained through
NCIt codes appears in at least one entity in every report.
Some of the entities whose NCIt codes result in a topo-
graphical range of C50 (consistent entities) are: areola, ax-
illary tail, breast, left breast, right breast, and nipple. How-
ever, we also observed the presence of other entities whose
NCIt codes either do not result in a topographical range of
C50 (inconsistent entities), or have no assigned topograph-
ical range (unclear entities). Some examples of the former
include: axillary (C76), axillary nodes and axillary lymph
nodes (C77), lymph (C42), muscle and vascular (C49), scar
(C44), and trabecula (C41); while some examples of the lat-
ter include mucin, estrogen, tumour, and tumours. Further,
as shown in Table 2 in the appendix, we found that the pres-
ence of inconsistent and unclear entities in a report relates to
a model’s performance in two ways: (1) when the model’s
prediction is correct, then the number of these entities is in-
versely proportional to the model’s confidence value; and (2)
when the model’s prediction is incorrect, then the number of
these entities is high.

For the NER model evaluation, due to space limitations,
here we present results only on the Disease tagging of a sin-
gle colon cancer report. As shown in Table 1 in the appendix,
we identified that the accuracy of the NER model can be
categorized into: (1) agreement, where the NER model and
UMLS verifier produce the same output (sentences 2 and 5);
(2) no annotation by the NER model, where entities iden-
tified as diseases by the verifier are missed by the NER
model (Sentence 4); (3) partial annotation, where a multi-
word term is partially annotated by the NER model (sen-
tences 1 and 6); (4) over annotation, where the NER model
over-specifies a tag across multiple entity types (Sentence
3); and (5) incorrect annotation, where the NER model in-
correctly tags non-disease entities as diseases (Sentence 7).
Interestingly, the model confidence values are observed gen-
erally to be below 0.9 in the cases where the UMLS verifier
identifies partial annotation. For example, in Table 1 in the
appendix, tumour in Sentence 1 has a confidence value of
0.612; and colorectal adenocarcinoma in Sentence 6 has a
confidence value of 0.592; though this is not always the case.
On the other hand, the confidence values where the UMLS
verifier agrees with the NER results are very high: pneumo-
turia in Sentence 1, and haemorrhage and necrosis in Sen-
tence 5 with confidence values of 0.975, , 0.988, and 0.98,
respectively.

In both these examples, the report output by the UMLS-
verifier can include the use of these inconsistencies in analy-
ses to explain a model’s performance beyond its confidence
in its predictions.

Discussion
Our architecture of a retrospective machine learning model
output verifier based on a very large expert knowledge

repository, the UMLS, is an important contribution towards
trusting the results of AI systems in healthcare. The archi-
tecture presented in Figure 1 can be adopted to fit different
machine learning models that are geared towards different
tasks. This is different from some existing approaches whose
main limitation lies in them being very model-specific, that
is, carefully adapting a specific model to allow for both ex-
plainability and accuracy (Mullenbach et al. 2018). Our ar-
chitecture provides a contribution towards a much-needed
solution to the area of model-agnostic approaches that is cur-
rently very limited (Cotton 2017).

Additionally, the application of our architecture to verify
the results of machine learning models brings to this prob-
lem area the full power and resource-richness of the UMLS.
This can be used, not only to identify incorrect results from
a machine learning model, but to go further and propose rea-
sons for the incorrect results. This allows us to identify lim-
itations in the model, an essential step in the healthcare do-
main (Myers et al. 2020; Stultz 2019). As an example, the
evaluation of the classification model results suggest the en-
tities that could be affecting model performance, and, most
importantly, identifies characteristics in reports which can be
used to explain incorrect model predictions, even when the
model’s confidence values are very high. For NER, the ver-
ification results point to causes of errors arising from partial
entity extraction, no entity extraction, and over-extraction of
entities. These reasons can provide a possible avenue to con-
sider when developing the next class of NER models. This
would be a directed investigation, as opposed to assuming
that the errors can be corrected by, for example, tuning hy-
perparameters, using more training data, adding more hid-
den layers, applying different word-vector representations,
etc..

Conclusion

In this paper, we presented an architecture for the retrospec-
tive verification of the results of machine learning models,
as an avenue to creating trust in these models used in health-
care. The proposed architecture uses various terminologies
from the UMLS to agree with or contradict the output from
a machine learning model. We presented the results of the
evaluation done on the architecture for two tasks, ICD-O to-
pography classification and NER, showing how the UMLS
verifier can be used to identify and explain incorrect results
from a machine learning model. Future work will involve
evaluating the verifier more deeply: by using biomedical text
other than pathology reports, evaluating the fit-for-purpose
of our architecture on more biomedical NLP tasks, and us-
ing the UMLS-based verifier in tandem with machine learn-
ing models to improve the accuracy of results on-the-fly.

Appendices

Samples of the results on Classification and NER.



Input Sentence NER Model UMLS Verifier
(1) A male with a
rectosigmoid
tumour and
pneumoturia

tumour |
pneumoturia

rectosigmoid
tumour |

pneumoturia

(2) Cystoscopy
showed an
infratrigonal
fistula.

fistula fistula

(3) Two previous
biopsies showed
high grade
dysplasia of
colonic mucosa.

high grade
dysplasia of

colonic mucosa

high grade
dysplasia

(4) Sections
show several
fragments of
tissue, showing
predominantly
ulceration with
fibrinopurulent
exudate on the
surface.

- ulceration |
fibrinopurulent

exudate

(5) There is
extensive
haemorrhage and
necrosis
associated with
these fragments.

haemorrhage |
necrosis

haemorrhage |
necrosis

(6) There are
free-lying cells
as well as nests
of stromal
invasion within
the fragments
showing an
invasive
adenocarcinoma.

adenocarcinoma invasive
adenocarcinoma

(7) Necrotic
debris is
identified
associated with
the invasive
component.

necrotic -

Table 1: Comparison of disease entities identified by NER
model and UMLS verifier in sample sentences from a single
report

Predic-
ted

Actual Model
Confi-
dence

Consis-
tent

Inconsis-
tent

Unclear

Topography Entities
C50.0 C50.0 0.913 1 0 0
C50.1 C50.0 0.289 4 4 4
C50.2 C50.2 0.604 2 3 2
C50.4 C50.8 0.322 1 3 1
C50.0 C50.1 0.987 2 0 4
C50.9 C50.9 0.928 1 1 1
C50.9 C50.9 0.753 1 0 0
C50.5 C50.4 0.984 3 2 1
C50.5 C50.5 0.988 2 1 8
C50.5 C50.5 0.922 2 2 1

Table 2: Details on a sample of ten reports, showing the
number of consistent, inconsistent, and unclear entities
found in each report
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