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Abstract

Age-related macular degeneration (AMD) is one of the lead-
ing causes of permanent vision loss in people aged over 60
years. Accurate segmentation of biomarkers such as drusen
that points to the early stages of AMD is crucial in preventing
further vision impairment. However, segmenting drusen is ex-
tremely challenging due to their varied sizes and appearances,
low contrast and noise resemblance. Most existing literature,
therefore, have focused on size estimation of drusen using
classification, leaving the challenge of accurate segmentation
less tackled. Additionally, obtaining the pixel-wise annota-
tions is extremely costly and such labels can often be noisy,
suffering from inter-observer and intra-observer variability.
Quantification of uncertainty associated with segmentation
tasks offers principled measures to inspect the segmentation
output. Realizing its utility in identifying erroneous segmen-
tation and the potential applications in clinical decision mak-
ing, here we develop a U-Net based drusen segmentation
model and quantify the segmentation uncertainty. We inves-
tigate epistemic uncertainty capturing the model confidence
and aleatoric uncertainty capturing the data uncertainty. We
present segmentation results and show how uncertainty can
help formulate robust evaluation strategies. We visually in-
spect the pixel-wise uncertainty and segmentation results on
test images. We finally analyze the correlation between seg-
mentation uncertainty and accuracy. Our results demonstrate
the utility of leveraging uncertainties in developing and ex-
plaining segmentation models for medical image analysis.

Introduction
Age-related macular degeneration (AMD) is a retinal dis-
ease leading to permanent vision loss among the aged pop-
ulation worldwide. Early detection of AMD plays a vital
role in limiting the disease progression. Drusen - protein
or lipid deposits that usually accumulate between Bruch’s
membrane and retinal epithelium layer - is a key biomarker
that can indicate early developments of AMD. There are ef-
forts aimed at detecting drusen in fundus and optical co-
herence tomography (OCT) images (Peng et al. 2019; Saha
et al. 2019), however, most have focused mainly on the vol-
umetric classification of drusen, categorizing it into differ-
ent size (Keenan et al. 2020). There are also some effort in
classification of AMD based on absence or presence of any
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pathology (Antony, Maetschke, and Garnavi 2019). A chal-
lenging and rarely attempted task is the precise segmentation
a.k.a pixel-wise classification of the drusen in OCT images.
This segmentation task is particularly challenging due to the
drusen appearing in varied sizes and shapes, its resemblance
to noise which is commonly present in OCT, as well as the
low contrast.

Segmentation is ubiquitous in many areas of medical
imaging. Over the years, convolutional neural networks
(CNN) and its variations like U-Net (Ronneberger, Fischer,
and Brox 2015; Li et al. 2018) have shown promising re-
sults on many medical images. However, deep learning al-
gorithms applied to different segmentation tasks in medical
imaging have not enjoyed the same level of success as nat-
ural images. The primary reason for such an impediment is
the difficulty of having access to a large amount of high-
quality labeled data. Annotating medical images is costly as
it often requires the expertise of clinicians. In ambiguous
cases, even expert annotations can be inconsistent, resulting
in noisy annotations. The model will produce inaccurate seg-
mentation when trained using such limited and noisy data.
Quantification of uncertainties associated with the segmen-
tation output is therefore important to determine the region
of possible incorrect segmentation, e.g., region associated
with higher uncertainty can either be excluded from subse-
quent analysis or highlighted for manual attention.

Epistemic and aleatoric uncertainty are two major types
of uncertainty that one can quantify in Bayesian deep learn-
ing (Der Kiureghian and Ditlevsen 2009; Kendall and Gal
2017). Epistemic uncertainty captures the uncertainty in the
model parameters due to the lack of knowledge about the
underlying model that generated the given data. In contrast,
aleatoric uncertainty captures noise inherent in the input
data. While the epistemic uncertainty can be reduced by
collecting more training data, aleatoric uncertainty can not
be explained away by having more data (Kendall and Gal
2017).

The literature on uncertainty quantification in the context
of diagnosing AMD mainly aim at analyzing the epistemic
uncertainty for the relatively easier task of segmenting the
retinal layers in OCT images (Sedai et al. 2019; Seeböck
et al. 2019). We believe no work in the literature has at-
tempted the task of quantifying and analyzing both the epis-
temic and aleatoric uncertainty associated with segmenting



the drusen in OCT images. Hence, there exists a gap in the
literature on developing a segmentation model for detecting
drusen and quantifying the uncertainty towards building a
robust system for early diagnosis of AMD.

In this quest, we develop a U-Net (Li et al. 2018) based
segmentation framework for detecting the drusen in OCT
images on a benchmark dataset. We model the segmentation
uncertainty using both epistemic and aleatoric uncertainty
measures. We evaluate the generalization performance of the
model for drusen segmentation. We further show the utility
of segmentation uncertainty in evaluating the model on spe-
cific regions of test images. We visualize the drusen segmen-
tation and pixel-wise uncertainty measures on test images.
We conclude by analyzing the association between segmen-
tation uncertainty and accuracy. Our results demonstrate that
both epistemic and aleatoric uncertainty helps to explain the
erroneous region of drusen segmentation at test-time.

Drusen Segmentation and Uncertainty
Quantification

Having only a limited number of labeled data - which is of-
ten the reality of developing AI models in medical applica-
tions - we augment the training set by introducing different
patches containing drusen from a single image. We create
the patches by cropping an image with windows of sizes
128, 192, and 256. This technique of lowering the resolu-
tion of the image also helps us to avoid resizing the images
to preserve important aspects of the pathologies. To be con-
sistent with the training data, we also generate patches from
test data by using a window of size 128.

We use a standard U-Net (Li et al. 2018) model with the
encoder-decoder architecture. Both the encoder and decoder
have four blocks wherein each block in the encoder com-
prises of four convolutional units followed by batch normal-
ization (Ioffe and Szegedy 2015) and leaky rectified linear
unit (Maas, Hannun, and Ng 2013). We use skip connections
(Drozdzal et al. 2016) between the output of the encoder
blocks and input of the decoder blocks. In the final layer, we
use a convolution layer with channel number equal to the
number of classes and a softmax activation function. In our
U-Net architecture, we use spatial dropout (Tompson et al.
2015) before every convolutional layer. We train the model
and subsequently compute the segmentation and uncertainty
maps.

We compute the pixel-wise epistemic uncertainty using
Monte-Carlo dropout (Gal and Ghahramani 2016) which
characterizes the dropout regularization (spatial dropout in
our model) as a variational Bayesian inference problem. The
Monte-Carlo dropout (Gal and Ghahramani 2016) quantifies
the uncertainty by having T stochastic forward passes dur-
ing inference where the dropout is enabled at each pass. For
a given class c and pixel x in an input image, we obtain the
output by averaging the softmax probabilities over multiple
forward passes as,

p(y = c | x,D) =
1

T

T∑
t=1

p(y = c | x,wt) (1)

where t = 1, 2, ..., T denotes each forward pass, wt denotes
the weights of the model after applying dropout at tth pass
and D is the training dataset. We use T = 10 in our experi-
ments.

Quantifying the variations in the predictions by augment-
ing data at test-time is a simple yet effective strategy for
estimating aleatoric uncertainty (Ayhan and Berens 2018).
Motivated by this, we quantify the pixel-wise aleatoric un-
certainty for drusen segmentation using test-time augmenta-
tion. During inference, we feed the model with T transfor-
mations of the input image generated using different aug-
mentation techniques to obtain probability distribution over
the predictions. Similar to epistemic, we average the softmax
probabilities over multiple transformations as,

p(y = c | x,D) =
1

T

T∑
t=1

p
(
y = c |M−1

t (Mt(x)),w
)
(2)

where Mt denotes the transformation operation at t and w is
the model weight. The reverse transformation M−1

t is only
applied in case of geometrical augmentation techniques like
rotation. Additionally, M−1

t is an identity operation for im-
age processing based transformations like blurring. The cur-
rent work uses randomized augmentation techniques that in-
clude adjusting brightness, contrast, blurring and rotation of
the images.

We evaluate the uncertainty for a pixel x using the entropy
of predictive probability distribution as,

H [y | x,D] := −
∑
c

p(y = c | x,D) log(p(y = c | x,D))

(3)
where p(y) is the average of softmax probabilities computed
using Equations (1) and (2) for epistemic and aleatoric meth-
ods respectively. Similarly, we compute the average segmen-
tation uncertainty of drusen as,

Uavg =
1

N

∑
p(y)≥0.5

H [y | x,D] (4)

where N is the number of pixels that satisfy p(y) ≥ 0.5.

Results
We conduct experiments on a benchmark dataset that is pub-
licly available (Farsiu et al. 2014). The dataset consists of
OCT volumes for 269 subjects diagnosed with AMD and
115 normal subjects. We extract 286 images from the 143
AMD OCT volumes by sampling B-scans which have vis-
ible drusen. We then obtain the expert annotations for the
drusen in all the images. We create a training set with images
sampled from 70% of the subjects and use the remaining for
validation. We augment the training data by flipping the im-
ages horizontally and rotating them. We evaluate the model
on a holdout test dataset. To gain more insights into the gen-
eralization performance of the model across varied sizes of
drusen, we divide the images into large, medium, and small
based on the size of drusen.

In Table 1, we report the generalization performance of
the following instances of a U-Net model: a, with no uncer-
tainty estimation, b, with epistemic uncertainty, and c, with



Method Large Medium Small
Dice Precision Recall Dice Precision Recall Dice Precision Recall

no-uncertainty 0.72 0.83 0.67 0.65 0.71 0.61 0.55 0.63 0.51
epistemic 0.72 0.84 0.65 0.64 0.72 0.58 0.53 0.68 0.48
aleatoric 0.73 0.83 0.67 0.64 0.71 0.6 0.54 0.64 0.5

epistemic-thresholded 0.8 0.93 0.72 0.71 0.85 0.64 0.57 0.75 0.5
aleatoric-thresholded 0.8 0.91 0.74 0.71 0.82 0.63 0.57 0.72 0.5

Table 1: Model performance on holdout test dataset: average of the scores from different methods are reported across large,
medium and small-sized drusen. The method ”no-uncertainty” indicates U-Net model which do not estimate any uncertainty.
In the last two methods, the pixels having higher uncertainty (least confidence) are excluded from the evaluation.
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Figure 1: Visualization of drusen segmentation with pixel-wise epistemic and aleatoric uncertainty on test images. Ground truth
and predicted drusen pixels are highlighted with a separate colour.
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Figure 2: Correlation between the average drusen segmentation uncertainty and dice score for large, medium and small-sized
drusen (marked in different colours) on test dataset. PCC stands for Pearson correlation coefficient.

aleatoric uncertainty. The evaluation metrics include dice,
precision and recall scores. All the methods achieve simi-
lar performance. While the models perform reasonably well
on images containing large drusen, they struggle to segment
medium and small-sized drusen. These results confirm the
difficulty of the drusen segmentation task.

We now devise an evaluation strategy by utilizing the fact
that higher uncertainty can imply less confidence in model
predictions. We thus evaluate the model only on certain re-
gions of the image by excluding the pixels where the seg-
mentation uncertainty is larger than a certain threshold. We
record these results in the last two rows of the Table 1. This
evaluation strategy reveals a significant improvement in the
model performance which is reflected across different met-
rics in Table 1. On average, this evaluation method has ex-
cluded 2-3% of pixels that reported higher uncertainty. Such
an evaluation strategy can essentially help us avoid evaluat-
ing the model on noisy regions (either poor-quality data or
annotation inconsistencies) of the image.

We visualize the drusen segmentation and pixel-wise epis-
temic and aleatoric uncertainty in Figure 1 along with the
input test images and ground truth labels. As one would ex-
pect the segmentation uncertainties are higher along the bor-
ders of the drusen. Figure 1 shows that segmentation uncer-
tainty is relatively high for the small-sized drusen compared
to larger ones. Figure 1 also reveals that the segmentation
uncertainty can detect erroneous segmentation by producing
higher uncertainty in those regions. Moreover, epistemic and
aleatoric uncertainty differs in some regions of the image
implying they represent different aspects of the model and
data. These results outline the utility of uncertainty quantifi-
cation methods in identifying segmentation inconsistencies
at test-time.

We now analyze the correlation between average segmen-
tation uncertainty and dice scores. We compute the Pearson
correlation coefficients between segmentation uncertainty
and dice score and visualize the results in Figure 2. The re-
sults show that the segmentation uncertainty exhibits strong

negative linear correlation with dice score where lower un-
certainties are associated with images having higher scores
and vice versa. This analysis also explains the poor per-
formance of the model on medium and small-sized drusen
where both the epistemic and aleatoric uncertainty exhibits
strong negative correlation with dice scores. Figure 2 fur-
ther illustrates that the uncertainty, in general, can help
explain incorrect drusen segmentation irrespective of their
size. From the correlation plots and coefficients, epistemic
uncertainty seems to exhibit stronger negative correlation
with accuracy than aleatoric. In short, these results demon-
strate that the uncertainty measures can be helpful in provid-
ing more insights into model predictions.

Conclusion
This paper presents the results from an initial attempt at
tackling the challenging task of segmenting the drusen in
OCT images for the early detection of AMD. We investi-
gate the usefulness of quantifying both the epistemic and
aleatoric uncertainty in our segmentation task. We evaluate
the generalization performance of the segmentation model
in detecting large, medium and small-sized drusen. Utiliz-
ing the pixel-wise segmentation uncertainty, we show its
significance in developing a robust evaluation framework.
The visualization of the drusen segmentation and associ-
ated uncertainty measures confirm the utility of quantifying
uncertainty in inspecting segmentation results at test-time.
Our analysis of the relationship between segmentation un-
certainty and accuracy reveals a strong negative correlation
implying the utility of uncertainty measures in identifying
and explaining incorrect segmentation.

On a broader note, clinical machine learning community
can benefit from the quantification of uncertainty in build-
ing robust and trustworthy models. In particular, it can offer
robust ways of evaluating clinical machine learning models
and provide additional insights to clinical decision makers
as they process the results generated by AI-powered system.
It also provides a utility to develop cost-effective training



strategies like active learning that can consume the uncer-
tainty measures to selectively sample the training data.
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