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Abstract

Network calibration aims at creating deep networks which
have predictive confidence representative of their predictive
accuracy. Refinement accounts for the degree of separation
between a network’s correct and incorrect predictions. Both
of these properties are highly desired from a deep learning
model being deployed in critical settings such as medical
analysis, automated driving, etc. However, recent approaches
proposed for one have been studied in isolation from the
other. In this paper, we aim to evaluate these independently
studied solutions together. Firstly, we derive a simple linear
relation between the two problems, thereby, linking calibra-
tion and refinement. This implies, improving calibration can
help achieve a refined model and on the flip side, approaches
focused on finding better ordinal ranking of predictions can
help in improving calibration of networks. Motivated by this
finding, we jointly benchmark various recently proposed ap-
proaches for the tasks of calibration and refinement. We find
that the existing refinement approaches also provide signif-
icant improvement on calibration of the model while main-
taining high degree of refinement.

1 Introduction
Deep neural networks are known to be highly uncalibrated
(Guo et al. 2017). This implies that the model’s confidence
in its estimate is not reflective of its accuracy. Specifically,
many studies have found that the networks produce high
confidences for incorrectly classified samples (Guo et al.
2017; Pereyra et al. 2017). For scenarios such as automated
driving, medical image analysis etc. where one wishes to
avoid failures at all cost, such highly confident incorrect pre-
dictions can prove fatal. As a result, calibration is a desired
property of the deployed neural networks which is being ac-
tively studied in deep learning research.

Refinement of a network’s prediction is another such de-
sired property. It has also been referred to as trustworthiness
of a network (Jiang et al. 2018). Typically, the output after
a softmax layer of a neural network is interpreted as confi-
dence (Hendrycks and Gimpel 2017; Guo et al. 2017). The
main focus is to find a scoring which provides trustworthy
ordinal ranking of predictions or simply, a better segregation
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of incorrectly and correctly classified samples. Such a rank-
ing can then allow the user to find an appropriate operating
point based on refined scores to safely override a prediction.

Considering that both calibration and refinement allow the
end-user to trust the predictions, the existing solutions rarely
discuss these in tandem. Though commonly studied together
in the domains of statistics (Murphy and Winkler 1977),
meteorological forecast (Bröcker 2009), medical analysis
(Gerds, Cai, and Schumacher 2008); for recent approaches
proposed in the deep learning domain the joint importance
has been sidelined for individual improvements. Before in-
tegrating both of these components directly into a study and
propose a solution which preserves both of these properties,
it is important to understand the underlying relationship be-
tween solving these two tasks. Subjectively, from Figure 1
we can assess that it is possible for a network to exhibit vary-
ing degree of association between the two properties. In (a)
we have a classifier which is well calibrated but poorly re-
fined. In this case, we can observe that the predictions are re-
liable towards the higher end of the confidence values. How-
ever, due to poor refinement there is a significant overlap
between chunk of the correct and incorrect predictions. This
causes majority of the correct predictions to be unreliable.
For (b), we see that the predictions are well separated but not
well calibrated. We can select an operating threshold for the
network to make sure that we don’t encounter many false-
positives in practice, however, the remaining predictions be-
ing uncalibrated subsequently become unreliable. Case (c)
shows an ideal scenario where the predictions are relatively
well separated and calibrated.

The above visual inspection indicates a complex dynamic
between the two desired properties. Also, it is possible for
these to be satisfied concurrently which leads to a highly
reliable network. However, currently the connection is not
well established. As a result, in this paper, we aim to build
a framework to understand calibration and refinement to-
gether. And, motivated by our findings, we assess the ap-
proaches proposed individually for each task under a unified
setting.

Our contributions are as follows:

• We highlight the connection between Expected Calibra-
tion Error, a calibration metric, and area under the ROC
curve computed for a classification task. This result forms
the motivation for our cross-domain evaluation.



(a) Good calibration, poor refinement (b) Poor calibration, good refinement (c) Good Calibration, good refinement

Figure 1: Hypothetical classification results leading to different calibration and refinement scenarios. Figure a) has low calibration error
(ECE = 0.06) but also low refinement score (AUROC = 77.4%). In b) we have well refined outputs (AUROC = 99.46%) but a poor
calibration performance (ECE = 0.18). Lastly in figure c), the calibration error (ECE = 0.08) and the refinement score (AUROC = 89%)
is relatively better. The details of the metrics are provided in section 2.

.

• Based on the derived relationship, we discuss the cases
where methods focusing on one task can positively or neg-
atively impact the other.

• We evaluate respective state of the art methods which are
studied in isolation under a unified setting.

The structure of the paper is as follows: In Section 2, we
review the existing approaches proposed for calibration and
improving refinement. In Section 3, we show that under rea-
sonable assumptions the goal of minimising the calibration
error falls in line with the goal of improving separability be-
tween correctly & incorrectly classified samples. We bench-
mark the state of the art methods across standard datasets to
observe cross-domain impact in Section 4. We conclude our
work in Section 5.

2 Related Work
Due to the high relevance of the problems addressed in our
work, the amount of existing literature is abundant. We focus
the discussion to non-bayesian approaches in this study.

2.1 Calibration
For shallower versions of neural networks Niculescu-Mizil
and Caruana (2005) showed that the outputs are well-
calibrated for a binary classification tasks. However, for
deep neural networks sadly this is not the case. It has been
shown that modern day networks are miscalibrated (Guo
et al. 2017). Since then there have been many approaches to
regularize the overconfident results of a model. The existing
approaches introduce temperature scaling (Guo et al. 2017),
negative entropy term to penalise the confident predictions
(Pereyra et al. 2017), Mixup data-augmentation (Zhang et al.
2018; Thulasidasan et al. 2019) to reduce the predicted
confidence estimate. Dirichlet based calibration (Kull et al.
2019) extends this idea to a classwise-calibration setting.
The above mentioned approaches are either applied after
the training(post-hoc) or applied while the learning is per-
formed.

To measure the calibration of a classifier there are many
metrics in practice. However, the ones predominantly used

for modern neural networks are Expected Calibration Er-
ror (ECE) and Maximum Calibration Error (MCE) (Naeini,
Cooper, and Hauskrecht 2015). Kumar, Liang, and Ma
(2020) proposed a post-hoc calibration approach mixing
Platt scaling and histogram binning. They also extended the
idea to a multi-class calibration. An alternative score often
used is the Brier score (Brier 1950). It captures both calibra-
tive and discriminative aspects of the predictions (Murphy
1973). However, the reported score is a summary of overall
performance and can hide the underlying failures.

Majority of the solutions proposed for calibration only fo-
cus on lowering the predicted confidence estimate. They do
not discuss the role of refining the predictions for improving
calibration which is precisely our focus in this work.

2.2 Refinement
Obtaining meaningful confidence values from a network
is a challenge which refinement seeks to solve. Many ap-
proaches have been proposed in this direction. Gal and
Ghahramani (2016) used dropout (Srivastava et al. 2014)
at test time to estimate predictive uncertainty by sampling
predictions over multiple predictions. Lakshminarayanan,
Pritzel, and Blundell (2017) use ensembles of neural net-
works to obtain useful confidence estimates. Moon et al.
(2020) incorporated Correctness Ranking Loss (CRL) to al-
low network to learn ordinal rankings between classified
samples. They also observed that CRL also helped in cali-
brating the network however, do not discuss the reasoning
behind this observation. As a replacement for confidence es-
timate, Jiang et al. (2018) introduced TrustScore, which pro-
vides better ordinal ranking of predictions than the output
of the network. They utilized the ratio between the distance
from the sample to the nearest class different from the pre-
dicted class and the distance to the predicted class as the
trust score. ConfidNet (Corbière et al. 2019) incorporates
the learning of this ‘trust’ score as an additional branch in
the network. In the post-hoc stage, ConfidNet branch of the
classifier is trained to predict a confidence score which mim-
ics the reliability of the network on its prediction.

Important metrics utilized to measure ordinal rankings
are (i) area under the ROC curve (AUROC) (Corbière



et al. 2019) (ii) area under the precision-recall curve
(AUPR) (Moon et al. 2020) (iii) excess area under the risk–
coverage curve (E-AURC) (Geifman, Uziel, and El-Yaniv
2019)

3 Calibration & Refinement
A dataset is composed of tuples of inputs and targets rep-
resented as D = {(xi, yi)}Ni=1, where x ∈ Rd and yi ∈
Y = {1, 2, . . .K}. We represent the learnable weights of a
network as θ. The output of a network is a multinoulli distri-
bution for K possible outcomes. The predicted category and
predicted confidence are respectively as:

ŷi = argmax
k∈Y

P (Y = k|xi, θ) (1)

ci = max
k∈Y

P (Y = k|xi, θ). (2)

ci is referred to as either the winning probability or maxi-
mum class probability.

We focus on the problem of a single-class calibration and
single-class refinement. This suggests both the tasks deal
with only 2 categories, which are overall correctly classi-
fied samples (or positive category) and overall incorrectly
classified samples (or negative category). We first explain
the metrics employed and then subsequently explain the as-
sumptions we make.

Expected Calibration Error is measured as the difference
between the expected accuracy and predicted confidence.
Formally,

ECE =
∑
m

|Bm|
n

[|E [A]m − Cm|] , (3)

where average confidence (C) and accuracy (A) is computed
after splitting the predictions in to predefined m bins based
on the predicted confidence. The choice for m varies across
literature, most common value is 15. Large number of bins
increases the variability of the results (Nixon et al. 2019),
whereas, small number of bins only provide a coarser indi-
cation of the miscalibration (Kumar, Liang, and Ma 2020).
ECE is 0 for a well calibrated model.

AUROC captures the concept of ordinal ranking nicely.
It denotes the expectation that a uniformly drawn random
positive is ranked higher than a uniformly drawn random
negative sample. AUROC (r), is formally defined as

r =

∫ 1

0

tpr dfpr, (4)

where tpr is the true positive rate and fpr is the false pos-
itive rate. The maximum value that r can attain is 1 repre-
senting an ideal ranking scenario.

Assumptions: We assume that the number of bins, m =
1, for computing ECE. By lowering the bin value we are re-
laxing the lower-bound of the true calibration error (Kumar,
Liang, and Ma 2020). Another assumption we make is that
E [A] < C. This is true in practice as for all deep neural
networks the problem of calibration entails over-confident
predictions.

Utilizing the assumptions, we can rewrite equation (3) as:

ECE = C − E [A] . (5)

For a binary classification task, it has been shown
(Hernández-Orallo, Flach, and Ferri 2012; Flach and Kull
2015) that r and E [A] are linearly related. They show that

E [A] = π(1− π)(2r − 1) +
1

2
, (6)

where π is the proportion of positive samples in the data. We
can subtract the average of the predicted confidence, C, on
both sides of equation (6) to obtain

E [A]− C = π(1− π)(2r − 1) +
1

2
− C. (7)

By replacing the resulting left hand side with ECE from
equation (5) we get

ECE = −
[
π(1− π)(2r − 1) +

1

2
− C

]
. (8)

Rearranging the right hand side provides us

ECE = αC − βr − γ, (9)

where α ≥ β > 0 and γ ≥ 0. The equalities hold when π =
1
2 , indicating an equal proportion of correct and incorrect
predictions in the data.

Equation (9) indicates a linear relationship between ECE
and AUROC under the applied assumptions from which we
can draw a number of observations:

1. Reducing the average prediction confidence of an over-
confident model helps in lowering the calibration error.
Many of the existing work for calibration predominantly
work along this direction.

2. Increasing r (or AUROC) can also help in reducing ECE.
To the best of our knowledge, proposed approaches for
calibration have not taken this direction or mentioned it
explicitly.

3. Approaches which emphasize on refinement focus on
improving the separability of the misclassified samples.
Based on the linear relationship, we can expect them to
have a positive impact on ECE.

4 Method
4.1 Selected Approaches
We first list the methods which we consider for joint eval-
uation and then proceed to enlist the chosen benchmark
datasets and implementation details

Calibration
• ERL (Pereyra et al. 2017): This method penalises the out-

put distribution of the network by adding a regularising
term based on the entropy of the predicted estimates.

• LS (Müller, Kornblith, and Hinton 2019): In this ap-
proach, the target one-hot encoded vector is replaced by
an ε-smoothed vector. This has been shown to increase
the calibration of the network by reducing overconfident
predictions.

• Mixup (Thulasidasan et al. 2019): The authors high-
lighted the undocumented effect of Mixup (Zhang et al.
2018) on the calibration of a network.



CIFAR-100 STL-10 CIFAR-10

Accuracy(↑) ECE(↓) AUROC(↑) Accuracy(↑) ECE(↓) AUROC(↑) Accuracy(↑) ECE(↓) AUROC(↑)
Baseline 72.07 ± 0.2 19.12 ± 0.13 85.18 ± 0.21 81.61 ± 0.2 11.55 ± 0.19 85.53 ± 0.7 92.96 ± 0.2 5.38 ± 0.15 92.5 ± 0.01

ERL 72.40 ± 0.19 16.8 ± 0.1 85.19 ± 0.3 82.38 ± 0.29 9.6 ± 0.41 86.57 ± 0.16 93.23 ± 0.01 4.41 ± 0.07 92.11 ± 0.4
LS 72.92 ± 0.43 5.76± 0.56 81.49 ± 0.27 81.99 ± 0.45 5.64 ± 0.02 85.13 ± 0.3 93.07 ± 0.2 7.4 ± 0.18 82.36 ± 1.23

Mixup 73.12± 0.18 6.87 ± 1.81 82.96 ± 0.27 82.94± 0.08 3.46± 0.33 85.9 ± 0.14 93.46± 0.18 4.16 ± 1.2 86.72 ± 0.8

CFN 72.07 ± 0.2 13.95 ± 2.7 86.0 ± 0.18 81.61 ± 0.2 9.23 ± 1.02 86.64± 0.4 92.96 ± 0.2 4.1 ± 0.2 92.55 ± 0.1
CRL 71.5± 0.2 12.5 ± 1.1 88.11± 0.16 79.5 ± 0.4 6.34 ± 1.19 85.29 ± 0.68 93.05 ± 0.37 1.87± 0.21 92.59± 0.42

Table 1: Calibration and refinement results aggregated over 3 runs. ↑ and ↓ indicate that for a particular metric higher and
lower values are better respectively. All values presented are in percentage. Values in bold font indicate the best values w.r.t the
corresponding metrics.

Refinement
• CFN (Corbière et al. 2019): This approach relies on a

post-hoc training of an alternative scoring criteria which
reflects the network’s ‘trust’ in its prediction

• CRL (Moon et al. 2020): The authors introduced a loss
motivated to improve ordinal ranking of misclassified
samples.

We represent a model trained traditionally without any cali-
bration or refinement-based enhancements as Baseline.

Datasets We have selected 3 popular image classification
datasets in our study. These are

• CIFAR-100 (Krizhevsky 2009)

• CIFAR-10 (Krizhevsky 2009)

• STL-10 (Coates, Ng, and Lee 2011)

Implementation Details The deep neural network archi-
tecture we use is the VGG-16 (with batch normalisation).
Many of the selected approaches use it in their respective ex-
periments hence it provides a relatively even ground for con-
ducting the study. We first split the training data into ‘train-
ing’ and ‘validation’ in the ratio 9 : 1. We utilize the vali-
dation set to save the best model while training. We perform
each experiment 3 times and report the average and standard
deviation of their performance. For computing ECE, we use
m = 15. We use official implementations where applicable
otherwise rely on our own Pytorch (Paszke et al. 2019) based
implementation. All the methods are trained for 300 epochs
with a starting learning rate of 0.1 reduced by a factor of 10
at epochs 150 and 250. CFN is trained using the baseline
model as obtained in the previous step and fine-tuned using
the schema of Corbière et al. (2019).

4.2 Results & Discussion
Table 1 contains the results from our effort for unified eval-
uation.

Accuracy is an important factor of classifier as we wish to
seek a classifier that is accurate in its prediction. Overall, cal-
ibration approaches appear to provide better results in terms
of accuracy. Mixup being the best among these. Refinement
based approaches achieve comparable or marginally lower
accuracies than their corresponding baselines. This high-
lights a potential pitfall of existing refinement approaches.
Though, not many refinement approaches exist for deep net-

works at the moment, a potential aspect to consider would
be to achieve accuracy on par with the baseline model.

For calibration, approaches specifically designed for the
task provide the lowest calibration error in 2 out 3 datasets.
Refinement approaches also provide comparable reduction
in calibration error. This supports our theory of achieving
reduction in calibration error when AUROC in terms of pre-
dictions is improved. For CIFAR-10, CRL achieves the low-
est calibration error.

Refinement based approaches provide the best ordinal
ranking of its prediction. CRL provides better separability
for 2 out of 3 datasets. Calibration approaches perform either
comparable or worse than the baseline model with LS and
Mixup as the worst performers. This inconsistency in sepa-
rability is alarming. Our hypothesis is that many of the cali-
bration methods naively reduce the confidence for all predic-
tions. This shifts the high density regions of the output dis-
tribution towards the low confidence values which improves
calibration but has neutral or negative impact on refinement.
What we seek is a classifier which retains majority of cor-
rect predictions with high confidence but outputs relatively
lower confidence values for possible incorrect predictions.
We would like to explore experimentally verify our hypoth-
esis in future work and learn the root cause of this refinement
degradation.

5 Conclusion

Calibration and refinement are two important attributes of a
safety critical system. Our aim was to highlight the exist-
ing shortcomings of the individual approaches and provide
a link between the two tasks. Calibration methods provide
better accuracy and reduced calibration error, however in
terms of refinement, they perform poorly. On the other hand,
refinement approaches do provide better separability from
misclassified predictions and comparable reduction in cali-
bration error but, they often fail to match the baseline accu-
racy. We hope by the juxtaposition of respective state of art
methods, we can encourage the community to focus on these
problems simultaneously. We also showed that increasing
refinement can assure reduced calibration error. This result
can serve as an alternative route for future joint calibration
and refinement approaches.
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imer, A.; d'Alché-Buc, F.; Fox, E.; and Garnett, R.,
eds., Advances in Neural Information Processing Sys-
tems 32, 8024–8035. Curran Associates, Inc. URL
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf.
Pereyra, G.; Tucker, G.; Chorowski, J.; Łukasz Kaiser; and
Hinton, G. 2017. Regularizing Neural Networks by Penal-
izing Confident Output Distributions.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. J. Mach. Learn. Res.
15(1): 1929–1958. ISSN 1532-4435.
Thulasidasan, S.; Chennupati, G.; Bilmes, J.; Bhattacharya,
T.; and Michalak, S. 2019. On Mixup Training: Improved
Calibration and Predictive Uncertainty for Deep Neural Net-
works. In NeurIPS.
Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2018. mixup: Beyond Empirical Risk Minimization. In In-
ternational Conference on Learning Representations. URL
https://openreview.net/forum?id=r1Ddp1-Rb.


