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Abstract

In this paper, we present an uncertainty-aware INVASE
to quantify predictive confidence of healthcare problem.
By introducing learnable Gaussian distributions, we lever-
age their variances to measure the degree of uncertainty.
Based on the vanilla INVASE, two additional modules are
proposed, i.e., an uncertainty quantification module in the
predictor, and a reward shaping module in the selector.
We conduct extensive experiments on UCI-WDBC dataset.
Notably, our method eliminates almost all predictive bias
with only about 20% queries, while the uncertainty-agnostic
counterpart requires nearly 100% queries. The open-source
implementation with a detailed tutorial is available at https:
//github.com/jx-zhong-for-academic-purpose/Uncertainty-
aware-INVASE/blob/main/tutorial invase%2B.ipynb.

Introduction
Breast cancer is an increasing health problem (Howell
et al. 2014). One in Eight U.S. women will develop inva-
sive breast cancer in her life time. Early diagnosis of Breast
cancer is important. Among them, conventional global fea-
ture based machine learning method has only achieved lim-
ited successes (Wang et al. 2016). High dimension instance-
wise feature selection is an emerging machine learning ap-
proach, on which the relevant subset of features should be
discovered for each individual data sample. To address that
problem, researchers have proposed several valuable mod-
els (Shrikumar, Greenside, and Kundaje 2017; Yoon, Jor-
don, and van der Schaar 2019; Chen et al. 2018; Lundberg
and Lee 2017). Among them, learning to explain (Chen et al.
2018) has built the foundation of instance feature selection
and explanation of the features as well using a mutual infor-
mation model. As one of the state-of-the-art algorithms, IN-
VASE (Yoon, Jordon, and van der Schaar 2019) further ex-
tends the learning to explain using a baseline network and a
predictor to train a selector in the actor-critic manner, which
allows variable-size feature selection.

Existing instance-wise feature selectors are devised to
achieve high performance in target tasks. However, they ig-
nore another important goal: capture the confidence of their
outputs. The lack of accurate confidence interval will lead
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to deviated estimate. In practice, that may lead to over-
confident yet incorrect predictions, which is likely dan-
gerous particularly in the application scenario of health-
care (Tonekaboni et al. 2019) such as false positive and
false negative. Since medical services are extremely com-
plex and hardly fault-tolerance, a confidence-agnostic algo-
rithm is undesirable. Thus, an uncertainty-aware approach to
mitigate the over confidence problem should be introduced
to instance-wise feature selection, for the purpose of avoid-
ing potential error decisions.

In this paper, we enhance INVASE to quantify its predic-
tive confidence by learning an uncertainty estimation. The
vanilla INVASE optimizes the predictor by treating data
points as samples from a set of distributions with Dirac
delta probability density functions, whereas our model re-
gards data as samples from learnable uncertainty-aware dis-
tributions. To be specific, we establish our model with series
of Gaussian distributions, of which the corresponding vari-
ances measure the degree of uncertainty. Our model is com-
pletely consistent with the vanilla INVASE in an extreme
condition, i.e., the model “thinks” that every prediction is
absolutely certain. In our work, two modules are added to
the vanilla INVASE, viz., uncertainty quantification and re-
ward shaping. The former estimates the uncertainty of se-
lected features for the predictor, while the latter assists in
improving such estimation via the selector.

To demonstrate the efficacy of our presented extension
for INVASE, we conduct extensive experiments on a real-
world medical dataset Wisconsin Diagnostic Breast Can-
cer (UCI-WDBC) (Dua and Graff 2017). Experimental re-
sults show the superiority of our certainty-aware approach:
at only about 20% query rates, our model correct almost
all predictive bias. To achieve an equal performance gain,
certainty-agnostic counterparts require to query about nearly
100% testing data.

In summary, the contribution of this paper is three-fold:

• Based on INVASE, we put forward an uncertainty-aware
extension. To the best of our knowledge, our model is the
first instance-wise feature selector to quantify predictive
uncertainty. That is beneficial to discover potential mis-
takes of the model output.

• Theoretically, the vanilla version of INVASE can be con-
sidered as a particular case of ours. As a seamlessly



backward-compatible extension, our implementation only
needs two modules: uncertainty quantification for the pre-
dictor and reward shaping for the selector.

• Experimentally, we evaluate our model on the UCI-
WDBC dataset from two aspects, i.e., overall performance
of the intact model, along with in-depth studies of every
component module. For reproducible research, the source
codes are provided online.

Related Work
Instance-wise feature selectors have only been studied re-
cently (Shrikumar, Greenside, and Kundaje 2017; Yoon, Jor-
don, and van der Schaar 2019; Chen et al. 2018; Lundberg
and Lee 2017), unlike the well-developed global ones (Lin
et al. 2015; Candes et al. 2018; Lin et al. 2012). Different
from prior work, our uncertainty-aware INVASE is able to
quantify the confidence for instance-wise predictions.

Uncertainty quantification has two main categories
from the perspective of Bayesian modeling (Kendall and
Gal 2017; McDermott and Wikle 2019; Postels et al. 2019;
Tagasovska and Lopez-Paz 2019), i.e., aleatoric and epis-
temic uncertainty. Aleatoric uncertainty (a.k.a. data uncer-
tainty) originates from the information bias of datasets, e.g.,
noisy observations in the data. Epistemic uncertainty (a.k.a.
model uncertainty) stems from the unseen inputs of a model,
e.g., insufficient training samples. Under such a taxonomy,
the uncertainty studied in this paper can be viewed as a type
of aleatoric uncertainty.
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Figure 1: Framework of uncertainty-aware INVASE. Our
baseline network is exactly the same as the vanilla INVASE,
whereas we make changes in the selector and the predic-
tor. The two new modules over the vanilla INVASE are de-
noted with dotted boxes. Based on the predictor, we apply an
uncertainty quantification module to estimate the predictive
uncertainty for selected features. Based on the selector, we
use a reward shaping module to guide the process of uncer-
tainty exploration toward a more precise result.

Problem Statement
Given a continuous label space Y = R or a proper subset
of R (or its discrete c-class counterpart Y = {1, 2, .., c}),
we denote a label as Y ∈ Y . X = X1 × X2 × ... × Xd
represents a d-dimension input feature space, and let X =

(X1, X2, ..., Xd) ∈ X be a random variable. Following the
notations of INVASE, a selection vector s = {0, 1}d indi-
cates that the ith-dimension variable is selected if si = 1,
otherwise it is not selected. In the formulation of instance-
wise feature selection, we are required to obtain an optimal
selection s for a certain realization x ∈ X of X . The corre-
sponding suppressed feature vector for the ith dimension is
defined as:

x
(s)
i =

{
xi (si = 1)
∗ (si = 0)

, (1)

where ∗ refers to that the ith dimension is not chosen. We
define a selection function S : X 7→ {0, 1}d for the d-
dimension instance-wise feature:

(Y |XS(x) = xS(x))
dis.
==== (Y |X = x) , (2)

where dis.
==== means distributional equality and S(x) is mini-

mal in accordance with the equality.

Recapitulation of the Vanilla INVASE
In the vanilla INVASE, Kullback-Leibler (KL) divergence is
leveraged to measure the “difference” between the two dis-
tributions in Equation (2). To minimize the KL divergence,
INVASE defines a loss estimator l̂(x, s) to approximate it
for regression problems w.r.t. the training dataset D:

l̂(x, s) = −
∑

(x,y)∈D

(||y−fφ(x, s)||2−||y−fγ(x)||2) , (3)

where fγ and fφ is the baseline network fed with the whole
feature set x and the predictor relied on the selected fea-
ture subset (x, s) parameterized by γ and φ, respectively;
|| · ||2 refers to the value of l2 loss. Intuitively, the INVASE
is intended to choose a subset (x, s), upon which the per-
formance surpasses that based on all features x as much as
possible. As for classification problems, (Yoon, Jordon, and
van der Schaar 2019) point out that optimizing the l2 loss
is equivalent to minimizing the KL divergence for classifi-
cation when the distribution of Y |X is Gaussian. Therefore,
we only discuss the model under the regression setting in our
remaining paper for simplicity.

Extra Optimizing Objective beyond INVASE
In Equation (3), the term ||y − fφ(x, s)||2 is designed to
estimate the predictive loss of selected features x(s). By do-
ing this, it treats an observation (x, y) in the dataset D as
a sample from a distribution of which the probability den-
sity function is a Dirac delta function δ without capturing
uncertainty:

PD(y|x, s) = P δ(y − fφ(x, s)) . (4)

Unlike INVASE, our model regards (x, y) in the training
dataset D as a sample from a learnable uncertainty-aware
distribution parameterized by ψ:

PD(y|x, s) = Pψ(y − fφ(x, s)) . (5)



In this context, our modeling parameters ψ can be trained
by minimizing its KL Divergence from the dataset’s distri-
bution:
ψ∗ = arg min

ψ
Ex∼PD(x)(dKL(PD(y|x, s)||Pψ(y−fφ(x, s)))) ,

(6)
where dKL is the KL divergence and E is the mathemati-
cal expectation. Besides the original goals of INVASE, our
extra optimizing objective is to obtain ψ∗ with a suitable dis-
tribution type instead of simply using the Dirac delta func-
tion. Conceptually, our framework is highly scalable since
any distribution with differentiable parameters is an eligible
tool.

Uncertain-aware INVASE
Following some prior research (Kendall and Gal 2017;
He et al. 2019) on modeling uncertainty, we specify a
set of Gaussian distributions to analyze the uncertainty of
instance-wise feature selection.

As illustrated in Figure 1, three neural networks constitute
our whole model. Among them, the baseline network fγ is
identical with its counterpart in vanilla INVASE. As for the
other two networks, we introduce two additional modules
respectively, uncertainty quantification of the predictor and
reward shaping of the selector networks.

Predictor with Uncertainty Quantification Fed into the
selected feature, the predictor outputs the corresponding re-
gression result to evaluate the performance of selection. We
devise an uncertainty quantification module to capture the
output uncertainty of our predictor. Specifically, we intro-
duce a network branch parameterized by ψ to learn the mean
value µ(x, s;ψ) and variance σ2(x, s;ψ) for a certain se-
lected feature x(s). To optimize ψ as described in Equa-
tion (6), we minimize the negative log-likelihood cost in the
predictor φ:

lφ(x, s;ψ) = − logPφD(y|x, s;ψ)

=
log σ2(x, s;ψ)

2
+
||y − µ(x, s;ψ)||2

2σ2(x, s;ψ)
+ constant .

(7)
Intuitively, if µ(x, s;ψ) easily fits y (with low uncertainty),
the predictive bias term ||y − µ(x, s;ψ)||2 tends to be small
so that the first term log σ2(x,s;ψ)

2 dominates our cost. By
minimizing the cost in this case, we will obtain a smaller
variance σ2. Otherwise, σ2 is inclined to be larger if the la-
bel y is difficult to approximate (with high uncertainty).

Thus, we quantify uncertainty with σ2: a larger variance
means higher uncertainty. Based on the sample-wise Gaus-
sian distribution N(µ, σ2), our loss estimator is computed
as:

l̂(x, s) = −
∑

(x,y)∈D

((
log σ2(x, s;ψ)

2
+
||y − µ(x, s;ψ)||2

2σ2(x, s;ψ)
)

−||y − fγ(x)||2) ,
(8)

where the meaning of all notations follows Equation (3) and
(7). In practice, we append a fully-connected branch to the
predictor for computation of ψ.

Selector with Reward Shaping The selector fθ is trained
to choose an appropriate subset of instance-wise variables.
The reward of its original version is defined as:

R(x, s) = −l̂(x, s)− λ||s||0 , (9)

where the l0-norm ||s||0 constrains the dimension number of
selected features and λ is a weighting hyper-parameter. In
our model, a reward shaping module encourages the selec-
tor to explore more uncertain samples, which assists in esti-
mating uncertainty more accurately. We shape the reward by
adding an uncertainty preference term to optimize the policy
of our selector θ:

R(x, s) = ωσ2(x, s;ψ)−l̂(x, s)− λ||s||0 , (10)

where ω is a hyper-parameter to control the balance between
uncertainty preference and the other rewards. As shown in
Section , the reward shaping module makes the uncertainty
adequately explored. In the testing phase, the prediction
fφ(x, s;ψ) for an input feature x with selection vector s
gives the regression result as µ(x, s;ψ) and the uncertainty
as σ2(x, s;ψ). In Appendix, we will discuss the relationship
between our model and the vanilla INVASE.

Experiments
Criteria for Evaluation Suppose that we are utilizing the
uncertainty-aware INVASE to diagnose breast cancers with
selected features. When we meet a highly uncertain predic-
tion of our model, we will naturally query the exact answer
from a skillful doctor. According to uncertainty scores, our
goal is to achieve higher performance with fewer queries.
Thus, we evaluate the model by observing the performance
gain on test data across different query rates. For simplicity,
we assume that the doctor does not make any error, i.e., an-
swers to all queries are always right. The queried samples by
doctor consists of the data with uncertain of prediction thus
need to be verified by doctor for correction.

Dataset and Evaluation Metric As the given imple-
mentation of INVASE, we carry out experiments on UCI-
WDBC (Dua and Graff 2017) dataset, which has 569 records
of a breast cancer diagnosis with 30-dimension features. Fol-
lowing the original setting, we hold out 80% data for training
and randomly sample the test set 20 times. The weighting
hyper-parameter of reward shaping ω is set as 0.1 empir-
ically. In all the experiments, we keep the default settings
identical to the vanilla INVASE if not specified particularly.
We keep the same performance metrics as the vanilla IN-
VASE, mainly area under the curve of receiver operating
characteristic (AUC-ROC) and average precision (a.k.a. area
under the curve of Precision-Recall, AUC-PR).

Benchmarks for Comparison Since no prior instance-
wise feature selector explicitly quantifies the predictive un-
certainty, there does not exist prior work for comparison.
Hereby, we introduce two benchmarks, i.e., “Oracle” and
“w/o Uncertainty”. Oracle is an ideal selection strategy: a
sample with the largest predictive bias from the ground truth
takes precedence. That can be deemed as the upper bound



of an uncertainty-aware model since every query is capable
of maximizing the performance gain. Here the query means
the data that are in need of further doctor verification. An-
other selection method denoted as w/o Uncertainty is that
we know nothing about uncertainty and randomly choose
our queries, corresponding to uncertainty-agnostic models
(e.g., the vanilla INVASE). The uncertainty here refers to
the probability of a sample needs to be sent to doctor for fur-
ther verification. As for the our model, we just prioritize the
query about an uncertain prediction: queries are submitted
in descending order of uncertainty scores (i.e., the variance
σ2).
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Figure 2: Performance change tendency at different query
rates. Note: around 20 % query rate, the model accuracy has
become significantly better - nearly perfect. Query rate: it is
defined as the lower confidence prediction of sample versus
the total of test sample.

Results As depicted in Figure 2, we make comparisons
with three metrics at various query rates. It is observed
that our model quickly reduces the predictive bias (l2 test-
ing loss) on test data from Figure 2(a). Its predictive bias
decreases to nearly 0 with only about 20% query sam-
ples, whereas the uncertainty-agnostic model requires al-
most 100% query data to achieve similar performance. In
terms of the remaining three measurements, our approach
also outperforms the uncertainty-agnostic one by a large
margin. For quantitative evaluation, we report the perfor-
mance gain w.r.t AUC-ROC and AUC-PR in Table 1 and
Table 2 at various query rates. The purpose of this table is
to show with such queried data, the labels of the data will
be corrected correspondingly thus leading to the increase of
performance gain. The larger increase of the performance
gain indicates the increased likelihood of the model to pred-
icate the uncertain sample. Along with the growth of query
rates, the performance gain of our model rises much faster
than uncertainty-agnostic predictions.

Table 1: Performance gain (%) of AUC-ROC at various
query rates. The value of AUC-ROC at 0% query rate is
98.40%.

Methods 0.1% 0.5% 1% 5% 10% 50%
Oracle 0.18 0.47 0.73 1.50 1.60 1.60

w/o Uncertainty 0.00 0.01 0.02 0.15 0.33 1.28
Ours 0.03 0.11 0.18 0.54 0.95 1.60

Table 2: Performance gain (%) of average precision (AUC-
PR) at various query rates. The value of average precision
at 0% query rate is 99.06%.

Methods 0.1% 0.5% 1% 5% 10% 50%
Oracle 0.13 0.31 0.47 0.89 0.94 0.94

w/o Uncertainty 0.00 0.01 0.01 0.09 0.20 0.76
Ours 0.02 0.06 0.11 0.31 0.54 0.94

Exploration and Ablation Studies
In this paper, two additional modules is introduced to en-
hance the vanilla INVASE, i.e., uncertainty quantification of
the predictor and reward shaping of the selector. Through
exploration and ablation studies, we attempt to verify their
efficacy individually. It is important to note that the shaded
area in Figure 3 represents the uncertainty of the model to
predicate the correct positive or negative sample.
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Figure 3: Exploration of uncertainty quantification. The x-
axis is the value of a certain feature and the y-axis represents
the testing prediction (the training label). The red shade is
the area with x =feature value and µ(x, s;ψ)−σ(x, s;ψ) ≤
y ≤ µ(x, s;ψ) + σ(x, s;ψ).

Can the uncertainty quantification module capture con-
fidence? As shown in Figure 3(b) w.r.t. the feature “Worst
Radius”, the test of uncertainty within the range from 12 to
20 is large since the training labels are ambiguous (mix of 0
and 1), whereas the uncertainty beyond that range is approx-
imately 0 because the training annotations are exclusively
0 or 1. Similar correspondences also occur in the remain-
ing features of Figure 3. The aforementioned results show
that our uncertainty quantification module is helpful to un-
certainty modeling.

Can the reward shaping module benefit uncertainty
estimation? We adopt the predictive bias to investigate
whether uncertainty is correctly estimated, As shown in Fig-
ure 4(a), variances learned with reward shaping are indeed
effective indicators for mis-classified results. However, vari-
ances of the model without reward shaping scatter across a
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Figure 4: Ablation of reward shaping. (Left: with reward
shaping, Right: without reward shaping) The x-axis is the
value of log σ2, the log of predicative variance (Equa-
tion (7)) and the y-axis represents the predictive bias for the
corresponding test data points.

wider range of the x-axis and have weaker relevance with
the predictive bias.

Conclusion
In this paper, we present an uncertainty-aware INVASE to
quantify predictive confidence. The model is able to quan-
tify the potential errors of our instance-wise feature se-
lection, which may be beneficial to some healthcare prob-
lems. In theory, the proposed approach extends the model-
ing perspective from a Dirac delta function to a learnable
uncertainty-aware distribution. Conceptually, it is a highly
scalable framework, of which any distribution with differ-
entiable parameters is an eligible tool. To be specific, we
apply Gaussian distributions to capture uncertainty with
their variances. Accordingly, we implement the uncertainty-
aware model with two extra modules over the raw INVASE,
i.e., uncertainty quantification of the predictor and reward
shaping of the selector. To evaluate our method, we carry
out experiments on UCI-WDBC w.r.t. the whole model and
each new component. Experimental results show that our ap-
proach discovers overwhelming majority testing errors with
only about 20% queries, whereas the uncertainty-agnostic
counterparts need nearly 100% query samples for the same
performance gain.
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1 Detailed Analysis on the Equivalency
between our Model with σ2 → 0 and the

vanilla INVASE
The differences between the vanilla INVASE and ours are
based on two new modules: uncertainty quantification and
reward shaping. To analyze the equivalency, all we need to
do is to prove the equivalency w.r.t. those two components.

Uncertainty Quantification In our model, we treat data
as samples from learnable uncertainty-aware distributions as
shown in Equation (5):

PD(y|x, s) = Pψ(y − fφ(x, s)) .

where PD(y|x, s) ∼ N(µ, σ2) in our model. We should
prove the Gaussian distribution approaches to a Dirac delta
function when σ2 → 0. Given a Gaussian distribution
N(µ, σ2), the probability density function of a variable t is:

f(t;µ, σ) =
1

σ
√
2π

exp(− (t− µ)2

2σ2
) .

Hence,

lim
σ2→0

f(t;µ, σ) =

{
∞ (t = µ)
0 (t 6= µ)

,

where
∫
f(t;µ, σ)dt = 1 according to the characteristics

of a probability density function. By definition, δ(t − µ) =
limσ2→0 f(t;µ, σ).

Reward Shaping In Equation (10), the total reward is de-
fined as:

R(x, s) = ωσ2(x, s;ψ)−l̂(x, s)− λ||s||0 ,

if σ2(x, s;ψ)→ 0, then R(x, s)→ −l̂(x, s)− λ||s||0. That
is just the form of Equation (9), so they are equivalent.

Therefore, the vanilla INVASE is a particular case of our
uncertainty-aware INVASE. When the variance σ2 → 0, the
Gaussian distribution N(µ, σ2) of the predictor approaches
to a Dirac delta function δ, in which case µ(x, s;ψ) →
fφ(x, s). Meanwhile, the additional shaping reward of the

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

selector ωσ2(x, s;ψ) → 0. Hence, our uncertainty-aware
model degrades into the raw INVASE if the variance of all
data points is infinitesimal. That corresponds to the condi-
tion in which every prediction is considered to be absolutely
sure.

2 Proof of the Formula in Equation (7)
Maximum Likelihood Estimation as minimizing KL Di-
vergence The Equation (6) is our optimization objective:

ψ∗ = arg min
ψ

Ex∼PD(x)(dKL(PD(y|x, s)||Pψ(y−fφ(x, s)))) .

The equivalence to maximum likelihood can be found in
(Bishop 2006) as a ready-made theorem, which is omitted
here for space limitations.

Loss of Gaussian Maximum Likelihood Estimation
(Nix and Weigend 1994) provide a similar conclusion for
common discriminative problems. In terms of our instance-
wise feature selection problem:

lφ(x, s;ψ) = − logPφD(y|x, s;ψ)

= − log(
1√

2πσ2(x, s;ψ)
exp (−||y − µ(x, s;ψ)||2

2σ2(x, s;ψ)
))

=
log σ2(x, s;ψ)

2
+
||y − µ(x, s;ψ)||2

2σ2(x, s;ψ)
+

log 2π

2

=
log σ2(x, s;ψ)

2
+
||y − µ(x, s;ψ)||2

2σ2(x, s;ψ)
+ constant .

That is identical to Equation (7).

3 Pseudo-codes
Please refer to Algorithm 1.

4 Implementation Details
In practice, we append a 2-layer fully-connected 100-
dimension branch to the predictor for computation of ψ, of
which the shape and BatchNorm settings are consistent with
the raw predictor.

In terms of Equation (7), we have a term to optimize:

log σ2(x, s;ψ)

2
+
||y − µ(x, s;ψ)||2

2σ2(x, s;ψ)
.



Algorithm 1 Training Process of Uncertainty-aware INVASE.

Input:
α: learning rate of selector
β: learning rate of baseline network and predictor
n: batch size
D: dataset
ω: a hyper-parametric weight for reward shaping
λ: a hyper-parametric weight for l1-norm of feature dimensions

Output:
θ: learned parameters of selector
φ: learned parameters of predictor
γ: learned parameters of baseline network
ψ: learned parameters of uncertainty quantification

1: repeat
2: Sample a mini-batch (xj , yj)nj=1 from D
3: for j=1,...,n do
4: Compute selection probabilities: pj = Sθ(xj)
5: Obtain selection vector: sj ∼ Ber(xj)
6: Estimate loss difference:
l̂(xj , sj) = −( log σ

2(xj ,sj ;ψ)
2 +

||yj−µ(xj ,sj ;ψ)||2
2σ2(xj ,sj ;ψ)

)− ||y − fγ(xj)||2)
7: Update the selector:
θ = θ − α 1

n

∑
(x,y)∈batch(ωσ

2(x, s;ψ)−l̂(x, s)− λ||s||0)∇θ log πθ(x, s)
8: Update predictor with uncertainty quantification:
φ = φ− β 1

n

∑
(x,y)∈batch∇φlφ(x, s;ψ)

ψ = ψ − β 1
n

∑
(x,y)∈batch∇ψlφ(x, s;ψ)

9: Update baseline network:
γ = γ − β 2

n

∑
(x,y)∈batch x(f

γ(x)− y)
10: until Convergence

However, that is numerically unstable: if σ2(x, s;ψ) = 0,
the second component ||y−µ(x,s;ψ)||22σ2(x,s;ψ) will become infinite.
Following (Kendall and Gal 2017), we actually utilize log σ2

as the computing unit. Therefore, the term is rewritten as:

log σ2(x, s;ψ)

2
+
1

2
exp(− log σ2(x, s;ψ)) ||y−µ(x, s;ψ)||2 .
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