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Abstract

Results of machine learning models for clinical data
are difficult to generalize outside of the context from
which the data was gathered due to substantial differ-
ences in the target population with respect to geography,
demography, etc. Naturally applying a prediction model
in a new context becomes problematic since the train
and test data differ in distribution and a common pit-
fall in such a procedure is handling unseen categories.
This is exacerbated in electronic health records data
due to the large set of possible categorical occurrences
such as ICD-10 and CPT codes. Modern approaches
rely on preprocessing techniques such as imputation by
treating unseen categories as missing values or by as-
signing them predetermined clusters. TF-IDF Similarity
Weighted Estimates (TIWS) is a novel framework by
treating categorical data in an NLP context. TIWS as-
signs the unseen category a linear combination of seen
categories with weights based on similarity measures.

Introduction
Generalizability is an issue in predictive modeling. It is stan-
dard practice to have the train and test sets to have the same
distribution so that models can be robust in their estimation.
However, there are several instances in which unseen data
deviates from the train data due to a new category or a dis-
tribution shift for a feature, etc. Current methods address this
issue as an imputation problem or simply assigning the un-
seen category a predetermined cluster (Jin X. 2011). How-
ever, imputation methods specify a single observation rather
than an entire category and it is tedious work developing
clusters for preprocessing. Our method addresses this issue
by developing a novel technique for deriving estimates for
unseen categories which allows for both demonstrable im-
provements in prediction and causal inference. The method
involves subsetting the data into its categorical partitions
and then using information across and between each cate-
gory through a customized TF-IDF encoding as similarity
weights for the target statistic estimate of the unseen cate-
gory.

Results were compared against common imputation tech-
niques such as kNN and Bayesian ridge across case stud-
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ies. In preliminary results, the method performed better than
kNN which is an improvement due to computational effi-
ciency, aggregated inference, and nonparametric modeling.
Data used to derive preliminary results include the Titanic
and Wake County Sudden Death data.

Method
Suppose we have train and test dataD = {(x, y)}ni=1,D∗ =
{(x∗, y∗)}n∗i=1, respectively. Let xi = (xi1, . . . , xip)

T ∈ Rp

consists of only categorical features where xij represents the
jth feature of xi, and j = 1, ..., p. Let cjk represent the
kth category of the jth feature, and let k = 1, .., lj with lj
denoting the number of known categories in the jth feature.
WLOG, we assume there is only one unseen category in the
feature j. We let cjlj+1

represent the unseen category. We
compute a target estimate ŷjk (Dorogush et al. 2018) for the
target parameter E(y|xij = cjk) using the training label y.
An empirical average of y with the same category cjk can be
used.

ŷjk =

∑n
i=1 I(xij = cjk) · yi + ap∑n

i=1 I(xij = cjk) + a

where a > 0 is a parameter. A common setting for p is the
average target value in the dataset. This assigns categories a
numeric value. To construct documents of categories it is
important to combine only the feature data Dx

⋃
D∗x =

{(x̃, )}n+n∗

i=1 . A document of a specific category is defined
by

Djj′=

cj′1 · · · cj′lj′


cj1 f(cj1, cj′1) · · · f(cj1, cj′lj′ )
cj2 f(cj2, cj′1) · · · f(cj2, cj′lj′ )

...
...

...
...

cjlj+1
f(cjlj+1

, cj′1) · · · f(cjlj+1
, cj′lj′ )

where f(cjk, cj′k′) =
∑n

i=1 I(x̃ij = cjk)I(x̃ij′ = cj′k′)
for j′ 6= j, j′ = 1, ..., p, k′ = 1, ..., lj′ , and k = 1, ..., lj . In
short, frequency counts where x̃ij = cjk and x̃ij′ = cj′k′ .
We considerDjj′ as a text corpus for the jth category, where
its words are represented by each cjk. For j′ = 1, . . . , p



and j′ 6= j, we augment the Djj′ matrix to the full doc-
ument matrix Dj that combines matrices by categories of
feature j. The document matrix Dj can be defined by Dj =
(Dj1| · · · |Djp) where Dj is a lj+1 ×

∑p
j′=1,j′ 6=j lj′ matrix.

Now we create the term frequency (TF) and inverse docu-
ment frequency (IDF) matrices as follows:

TDj
(cjk, cj′k′) =

f(cjk, cj′k′)− µcjk

σcjk

IDj
(cjk, cj′k′) = TDT

j
(cj′k′ , cjk)

T

where µcjk=
1
nj

∑p

j′=1
j′ 6=j

∑lj′

k′=1 f(cjk, cj′k′),

σ2
cjk

= 1
nj−1

∑p

j′=1
j′ 6=j

∑lj′

k′=1{f(cjk, cj′k′)−µcjk}2,

nj=
∑p

j′=1
j′ 6=j

lj′ . TF is the distribution of words that de-

scribe the document and IDF is the impact factor of those
words. IDF penalizes useless words.

Our proposed TIWS is the common standardization pro-
cedure for both TF and IDF due to its ubiquitious use but
they can be uniquely defined depending on the context. Let
g(A,B) be a transformation function that aggregates two
matrices A and B. Let HDj

= g(TDj
, IDj

) be the aggrega-
tion matrix which uses the Hadamard (element-wise) mul-
tiplication. One can utilize a similarity metric s(cjk, cjk′)
to describe the similarity between two row vectors of HDj

at categories cjk and cjk′ , and create a symmetric similar-
ity matrix S that includes all pairwise similarities. Here, we
choose a modified cosine similarity(B. and L. 2013), which
is defined as

s(cjk, cjk′) =
1

2
+

1

2
·

HDj (cjk)HDj (cjk′)
T√

HDj
(cjk)⊗2

√
HDj

(cjk′)⊗2

whereHDj
(cjk) is the row vector ofHDj

matrix at category
cjk, and a⊗2 = aa′ for a row vector a. It is recommended
that s(cjk, cjk′) ∈ [0, 1] since the similarity coefficients will
be used as weights to find the predicted value of the target
parameter of the unseen category. Finally, the unseen cate-
gory cjlj+1 is defined by

ŷjlj+1 =

∑lj
k=1 s(cjk, cjlj+1

) · ŷjk∑lj
k=1 s(cjk, cjlj+1)

Multiple Unseen Categories
Suppose there are multiple unseen categories in the test set
for the jth feature. Then we only need to be working with
the document matrix Dj and its similarity matrix Sj . When
deriving the Dj it is important to note that we are taking
frequency counts of all cjk for j = 1, ..., p and k = 1, ..., lj
in X . However, a TIWS estimate for an unseen ŷjlj+a

for
does not use any information from any other unseen category
cjlj+b

for a = 1, ...,m and b = 1, ...,m where a 6= b and for
m = 1, ..,∞ unseen categories. The derivation is described
in the following:

We set diag(Sj)=0 or s(cji, cjk)=0 for i = k for i =
1, ..., ljlj+m and k = 1, ..., ljlj+m where dim(Sj) = lj+m−1
x lj+m−1 and ~y = [ŷj1, . . . ŷjlj , 0, . . . 0]

′. We estimate the
vector of unseen categories for the jth feature as follows:

~c = Sj · ~y

~c =



lj+m∑
i 6=1,i=1

s(cj1, cji)ŷji

lj+m∑
i 6=2,i=1

s(cj2, cji)ŷji

...
lj+1∑

i 6=lj+1,i=1

s(cjlj+1 , cji)ŷji

lj+m∑
i 6=lj+m,i=1

s(cjlj+m
, cji)ŷji


Notice that ~c[lj+1]=

lj+m∑
i=1

s(cjlj+1
, cji)ŷji

=
lj+m∑
i6=lj+1

i=1

s(cjlj+1
, cji)ŷji since we set s(cji′ , cji)=0 for

i = i′ for i = 1, ..., p′ and for i′ = 1, ..., p. Also notice
that ~c[lj+1] does not contain ŷjlj+1

. To get the TIWS esti-
mate for ĉjlj+1 simply equate ŷjlj+1=~c[lj+1]. So for multiple
unseen categories {ŷjlj+1 , ..., ŷjlj+m} we can simply grab
~c[lj+1:lj+m] for those TIWS estimates. Distribute the remain-
ing weights that were set to 0 equally among all reference

categories i.e. distribute 1 - 1
m

lj+m∑
i6=lj+1

i=1

s(cjlj+1
, cji)ŷji. The

case of multiple unseen categories across multiple features
is simply an iterative extension.

Algorithmic Complexity & Relation to kNN
It can be shown that TIWS is identical to kNN (Fix
and Hodges 1951) under certain conditions. Namely,

kNNcjlj+1
=

lj∑
k=1

pjk·ŷjk

lj∑
k=1

pjk

. Generally, kNN uses information

within a local bound in an iterative fashion whereas TIWS
uses information in a one-shot aggregate fashion. The time
complexity for TIWS is O((n+n∗) · lj+m) and space com-
plexity of O((n + n∗) · lj+m) for the temporary similarity
matrix S.

Results
Sudden Death ICD-10
We benchmarked predictive performances for TIWS, kNN
and Bayesian ridge imputations. ICD-10 codes are encoded
diagnosis determined by a medical professional. The full
ICD-10 code description for first, second, and third diag-
nostics were used. There are 89 unique ICD-10 five letter
codes for the first diagnostic. This scenario is an edge case



since the majority of each categorical ICD-10 instance con-
tains only one instance. Only 14 out of the 89 ICD-10 codes
contain more than one observation. This is a special type of
sparsity since one can imagine that the majority of data con-
sists of outliers. Recall that TF-IDF attempts to capture the
frequency of each category with respect to categories within
the same feature and with categories across multiple fea-
tures. The document matrix for this data largely consists of
frequency count values of 1. It is interesting to see how the
methods perform.

The results in Table 1 demonstrate that all of the impu-
tation methods performed similarly. Although TIWS per-
formed slightly worse in the XGBoost(Chen and Guestrin
2016) scenario, we can see that even with a lack of informa-
tion, TIWS performs as solidly as the other imputation meth-
ods. This result gives a compelling reason to consider TIWS
since it performed similarly to its peers under extreme cir-
cumstances. It would be interesting to see how future ICD-
10 codes will cluster to the 89 first diagnostics ICD-10 codes
compared to the general medical classification groups out-
lined by the World Health Organization (WHO).

We also considered the case of using the predetermined
letter cluster to compare how the various methods per-
formed. The first few characters of the ICD-10 code cor-
respond to a general class of medical diagnosis outlined by
WHO. We scaled back from working with 156 categories
to 18 general categories. The results in Table 1 demonstrate
that once again all of the imputation algorithms perform sim-
ilarly with TIWS performing slightly better. It is interesting
to note that the kNN and Bayesian Ridge algorithms all se-
lected the same imputation decisions whereas TIWS slightly
deviated from those choices.

Titanic Cluster Analysis
There is difficulty in assessing how well TIWS estimates re-
flect the ground truth in the ICD-10 codes case due to the
sheer number of potential diagnoses. So the popular Titanic
data set will be evaluated to understand how TIWS is deter-
mining its estimates across multiple cases. The cases consid-
ered include multiple unseen categories for a single feature,
multiple unseen categories across multiple features, and di-
verging performances among imputation methods. Due to
the spacing limit, we only demonstrate the case where TIWS
diverges in its categorical selection from all the kNN mod-
els. Note that for all the other cases analyzed, TIWS outper-
formed kNN.

An interesting case occurred when all of the kNN mod-
els selected the same decision path but TIWS chose oth-
erwise. The results are shown in Table 2. All observations
that fell under the category Q ∈ embarked were removed
from the train set and used as the test set. It is important
to note that embarked consisted of only three categories
{S,C,Q}. For every observation, embarkedQ was most
similar to embarkedS for the kNNs, but TIWS determined
that embarkedQ was most similar to embarkedC . A rea-
son for this may be the number of observations per class
{S,C,Q} → {644, 168, 77}. So there was a much higher
chance that the majority of the nearest neighbors consisted
of embarkedS . TIWS performed significantly better across

all metrics and folds. This highlights a limitation of kNN.
kNN can be very near-sighted since it does not consider a
holistic analysis of the data. This can also be viewed as em-
pirical evidence of our proposition that TIWS approximates
kNN under certain conditions namely when the similarities
are identical to that of the proportion of the available seen
categories which occurs when neighbors = n.

Conclusion
Compared to imputation techniques, TIWS gains an advan-
tage in its estimation through an aggregated estimate rather
than through each individual observation. This helps answer
questions regarding how an unseen category behaves in rela-
tion to a reference of seen categories. In addition, TIWS can
be automatically used to estimate cases for when there are
multiple unseen categories across any number of features.
TIWS performed strongly under sparsity of information for
numerous categories in the ICD-10 case and was able to
outperform kNN by picking up global nuances among cat-
egories in the Titanic data. However, there are a few draw-
backs in TIWS estimation. TIWS is static in nature for sev-
eral algorithms i.e. an unseen category will follow the deci-
sion path of its most similar seen category for decision trees,
boosting, etc. Also, proving asymptotic properties for TIWS
statistics are difficult since we are considering it in an NLP
context. Despite these drawbacks, one should consider us-
ing TIWS if there is expected to be a large number of new
categories.
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ICD-10 Prediction Analysis
Letter Codes (18 categories) Full Codes (156 categories)

Random Forest
Method Accuracy Precision Recall Method Accuracy Precision Recall
knn(20) 0.700 0.744 0.842 knn(20) 66.2% 73.0% 78.4%
knn(40) 0.700 0.744 0.842 knn(40) 66.9% 73.4% 78.9%
knn(80) 0.700 0.744 0.842 knn(80) 66.5% 73.1% 78.9%
Bayes 0.700 0.744 0.842 Bayes 67.2% 73.9% 78.9%
TIWS 0.704 0.747. 0.842 TIWS 67.2% 73.9% 78.9%

XGBoost
Method Accuracy Precision Recall Method Accuracy Precision Recall
knn(20) 0.718 0.752 0.857 knn(20) 65.8% 73.0% 76.8%
knn(40) 0.718 0.752 0.857 knn(40) 66.2% 73.1% 77.3%
knn(80) 0.718 0.752 0.857 knn(80) 66.5% 72.8% 77.3%
Bayes 0.718 0.752 0.857 Bayes 66.5% 73.3% 77.8%
TIWS 0.722 0.756 0.857 TIWS 65.1% 72.5% 76.3%

Table 1: ICD-10 Prediction Analysis for letter and full codes

Diverging performance for TIWS & kNN
Unseen Categories {embarkedQ} (n=77)

CV1 (n=51) CV2 (n=51) CV3 (n=52)
Method Results Method Results Method Results
kNN (all) Accuracy:

70.6%
kNN (all) Accuracy:

68.6%
kNN (all) Accuracy:

67.3%
Precision:
60.0%

Precision:
63.6%

Precision:
81.8%

Recall:
35.3%

Recall:
36.8%

Recall:
37.5%

TIWS Accuracy:
80.4%

TIWS Accuracy:
74.5%

TIWS Accuracy:
78.8%

Precision:
68.4%

Precision:
63.6%

Precision:
76.0%

Recall:
76.5%

Recall:
73.7%

Recall:
79.2%

Table 2: General unseen categories for a specific feature ’embarked’


