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Abstract

With the increasing use of machine learning and Artificial
Intelligence (AI) in healthcare, ensuring the fairness of al-
gorithms is paramount to prevent health disparities and in-
equities from being reproduced in algorithm-guided medical
and policy decisions. In this work we investigate algorith-
mic bias in clinical prediction models and discuss challenges
in analyzing bias in observational health data. We show that
potential disparities in treatment opportunity exist between
races in the data for patients with opioid use disorder, and
that the direction of bias favoring one race over the other de-
pends on the choice of outcome label or fairness metric. We
further demonstrate how debiasing algorithms can effectively
mitigate the apparent bias in most experimental settings. This
study exemplifies the importance of thorough bias assessment
in prediction tasks based on healthcare data.

Introduction
Now more than ever before, machine learning algorithms are
used to guide decision making across various domains. Si-
multaneously, researchers and decision makers are becom-
ing more alert to the presence of algorithmic biases in such
models (Chen, Joshi, and Ghassemi 2020; Rajkomar et al.
2018; Gianfrancesco et al. 2018). Substantial work has been
done in this field to define fairness metrics and devise ap-
proaches to detect, evaluate and mitigate bias (Makhlouf,
Zhioua, and Palamidessi 2020; Friedler et al. 2018). Par-
ticularly, in the healthcare space, a recent landmark study
showed that an algorithm widely used in the United States
(US) to allocate care management resources is racially bi-
ased (Obermeyer et al. 2019). A similar type of bias was ob-
served in a nationally representative US population dataset
(Singh and Ramamurthy 2019), raising concerns for fairness
in data- and model-driven decisions in healthcare.

While previous works have explored bias from popula-
tion health management point of view, no one has inves-
tigated the problem for prediction tasks involving a spe-
cific disease cohort and clinical outcome. These tasks give
rise to challenges including difficulty in bias ascertainment,
effects of treatment options, and use of surrogate clinical
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outcomes. In this paper, we conduct a set of analyses us-
ing observational health data to assess fairness of clinical
prediction algorithms and discuss our challenges. We con-
sider patients diagnosed with opioid use disorders (OUD),
a historically challenging population with highly complex
physical and mental healthcare needs. Evidence-based treat-
ment called medication-assisted treatment (MAT) exists for
OUD, but the utilization is reported to be uneven across race
groups (Lagisetty et al. 2019). We can visualize a setting
where limited availability prevents prescribing MAT to all
OUD patients, and a prediction model is developed to iden-
tify patients who are at greater risk of experiencing adverse
outcomes. Fair outcome prediction for these patients is im-
portant from both clinical and public health point of views
considering the history of disparity and inequity resulting in
poor outcomes and distrust towards health systems.

The main contributions of this paper are (1) comprehen-
sive bias analysis of a real-world clinical scenario, includ-
ing application of debiasing approaches and (2) discussions
around analytic challenges. In addition to reaffirming part
of the findings in (Obermeyer et al. 2019), we demonstrate
a transparent approach to bias analysis that will help gain
trust from clinicians and practitioners and encourage more
widespread use of similar efforts.

Data and Study Setting
We used longitudinal patient-level claim records from the
IBM® MarketScan® Medicaid Databases (2013-2017). Pa-
tients were either white or black, continuously enrolled in
Medicaid during one year prior to and after the initial di-
agnosis date (i.e. index date); patients did not receive any
OUD treatment before the index date and did not have can-
cer or hospice for which use of opioid is justified. Selected
characteristics of the patients are presented in Table 1.

We follow the conventional terminology and assign a clas-
sification of ’high risk individual’ as the favorable label, as-
suming that this will lead to treatment opportunity. The pro-
tected attribute is race, and privileged value is white as op-
posed to black. Using three classifiers (logistic regression,
random forest, extreme gradient boosting trees (XGB)) we
predict high risk patients for one of the outcomes introduced
below. Patient features generated from the baseline data in-



Table 1: Characteristics of Medicaid patients with opioid use disorder, 2013-2017
Overall (n=42,525) White (n=32,518) Black (n=10,007)

Pre-index (Mean (SD) or N(%))
N (%) 100.0 76.5 23.5
Age 38.1 (12.8) 37.1 (12.4) 41.7 (13.4)
Female gender (N(%)) 27,946 (65.7) 21,659 (66.6) 6,287 (62.8)
Comorbidity index 0.7 (1.3) 0.6 (1.1) 1.0 (1.7)
N psychiatric diagnosis 1.3 (1.3) 1.3 (1.3) 1.1 (1.3)
Had >0 outpatient ER visits ((N(%)) 30,491 (71.7) 23,134 (71.1) 7,357 (73.5)
Had >0 emergency psychiatric admission (N(%)) 2,059 (4.8) 1,562 (4.8) 497 (5.0)
Post-index (Mean (SD) or %)
Total cost $17.1K (46.8K) $14.9K (41.4K) $24.3K (60.5K)
Outpatient ER visit cost $0.7K (2.5K) $0.6K (1.9K) $1.1K (3.7K)
N psychiatric diagnosis 1.3 (1.3) 1.3 (1.3) 1.1 (1.3)
Emergency psych admission cost $1.1K (8.2K) $1.1K (7.7K) $1.3K (9.6)
MAT utilization rate (N(%)) 8,700 (20.5) 7,837 (24.1) 863 (8.6)
N: number; ER: emergency room; MAT: medication assisted treatment

clude age, gender, race, medication use, comorbid condition
diagnoses, mental health procedures, and utilization levels
such as number of emergency room (ER) visits in baseline
period. Data were split into train:validation:test sets (5:3:2)
and models were mostly trained with default parameter val-
ues. While all three classifiers produced qualitatively consis-
tent results, we focus our interpretation on the results from
XGB models in the interest of space and clarity.

Bias Analysis and Challenges
Bias in our study context is discrepancy in health related
measures between groups of people defined by the sensitive
attribute, race, that cannot be justified. One ‘fair’ scenario
with OUD patients would involve MAT being prescribed to
patients who are most likely to benefit from treatment by
avoiding adverse outcomes such as emergency room visits,
overdose events, or hospitalizations, regardless of their race.
We inspect the data and the prediction outcomes for bias
before attempting to mitigate bias.

Bias assessment in data
The most fundamental step is determining whether there ex-
ists bias in the underlying data. If the training data is unbi-
ased, the model is less likely to produce biased predictions.
Because numerical discrepancies can be attributed to fac-
tors other than bias, an in-depth knowledge of the primary
data generating process is critical. There may be ‘admissi-
ble’ differences between subgroups that can be explained
by reasons such as comorbid conditions. On the other hand,
the seemingly justifiable difference may actually arise from
more deeply rooted disparities that manifest in differential
access to care and diagnosis. One crucial step towards trust-
worthy bias analysis is explicitly stating all verifiable and
non-verifiable assumptions.

If there is no bias in resource allocation, we would ex-
pect to see no differences by race in the data with respect
to the characteristics of patients receiving MAT. There is no
standard approach to assess data for presence of bias. We
examine this by modeling the probability of receiving MAT,

adjusted for clinical risk factors and baseline service utiliza-
tion. Biological race is a non-modifiable factor, but as a so-
cial construct captures various determinants of health asso-
ciated with race. As discussed in (VanderWeele and Robin-
son 2014), we wish to interpret the coefficient of race as
the degree of inequality that would remain if risk factor dis-
tributions of the black population were set equal to that of
the white population. We are assuming that 1) the numerical
discrepancy we observe between white and black patients
is indeed unjustifiable bias after adjusting for background
determinants of health, and that 2) race’s effect on the prob-
ability of receiving treatment is mediated through variations
in clinical factors, health service utilization and related be-
haviors, and a composite effect of disparity.

A generalized linear model predicting receipt of MAT ad-
justed for baseline and mediating factors had the odds ratio
(OR) of 3.18 (95% confidence interval 2.95-3.43) for race
variable, suggesting existence of inequality in treatment pro-
vided that our assumptions hold. Since we adjust for many
background variables, we expect that at least part of the re-
sults is attributed to disparity. In a model adjusting for age,
gender, race, and comorbidity, use of MAT was associated
with reduced risk of ER visit and reduced cost (total, ER,
inpatient cost). Lower adjusted probability of any ER vis-
its (OR 0.82, 0.78-0.87) and adjusted mean cost (total, ER
cost) among white patients suggest treatment inequality can
lead to more undesirable events (e.g. ER visit) and higher
costs in black patients. MAT use was not associated with
overdose risk, and the probability of overdose or psychiatric
admission was slightly higher among white patients.

Bias in predictions
Determining MAT allocation by simply following historical
distribution of MAT treatment is problematic because cur-
rent practice appears to be associated with racial disparity
as we have shown above. The alternative is to identify at-
risk patients using predictive algorithms. Unlike those ex-
plicitly targeting cost, clinical risk prediction models often
need to opt for surrogate outcomes due to limited data. The



Table 2: Predicted high risk subcohorts (XGB) without debiasing
Total Cost ER Visit Cost Psych IP Cost N Psych Dx

(% or Mean∗) White Black White Black White Black White Black
Age 48.0 46.4 42.2 43.5 33.5 37.6 34.7 39.4
Female gender (%) 59.5 57.8 68.2 65.1 62.9 50.5 65.7 48.8
Pre-index comorbidity index 2.6 3.4 1.7 2.5 0.8 1.3 1.0 1.6
Total cost ($) 49.4K 77.2K 45.0K 71.8K 33.6K 38.2K 27.9K 39.7K
Outpatient ER visit cost ($) 2.4K 3.5K 3.1K 4.4K 1.4K 2.7K 1.2K 2.8K
Emer psych admission cost ($) 5.0K 4.7K 4.3K 4.9K 6.2K 9.0K 6.2K 9.6K
N psychiatric diagnosis 2.2 1.6 2.4 1.8 2.8 2.6 3.1 3.1
MAT utilization (%) 11.8 7.0 16.3 8.0 14.5 6.4 15.5 3.5
Overdose event (%) 4.5 2.5 4.7 2.2 4.5 3.5 5.0 3.5
∗Leaving out N and standard deviations for space
All post-index measures except age, gender, and comorbidity index

challenge here is choosing the most relevant yet least bi-
ased proxy in high dimensional healthcare data. Measure-
ment error and human bias affect the label data which is of-
ten treated as the ground-truth in model building. Bias is de-
fined with respect to a specific outcome, therefore evaluating
bias is sensitive to outcome label.

A number of surrogate labels exist for OUD patients. The
shared goal is to find high risk patients for MAT who will
benefit from treatment by lowering the risk. We compare
four models trained with different labels to classify high risk
patients with varying likelihoods of reflecting biases in the
underlying data. These labels were chosen for clinical and
public health relevance based on prior studies.

• Being in the top decile of total healthcare cost (Total
Cost): while total cost is often used to identify poten-
tially ‘expensive’ patients for subsequent interventions, it
is correlated with access to care or utilization pattern, dif-
ferences that may arise from underlying disparities.

• Being in the top decile of outpatient ER visit cost (ER
Visit Cost): we hypothesized that the occurrence of health
related issues leading to ER utilization would be less asso-
ciated with bias arising from access to or quality of care,
but more with the severity of physical and mental illness.

• Being in the top decile of emergency psychiatric admis-
sion cost (Psych IP Cost): we expected that occurrence
of acute exacerbation of mental health issues resulting in
emergency admissions would be less associated with race
related bias compared to all-cause healthcare needs.

• Being in the top decile of the number of psychiatric diag-
noses (N Psych Dx): the count of chronic conditions has
been used as a measure of underlying health status as an
alternative to cost. We used the total number of psychi-
atric diagnoses as a measure of psychiatric comorbidity.

We compared the characteristics of high-risk subcohorts
to see how they differ across the four label choices (Ta-
ble 2). As expected, the subcohorts in general had higher
disease burden and utilized more health services. Black pa-
tients were still much less likely to receive MAT. Using total
cost or ER cost label classified as high risk older and sicker
patients compared to using the other two labels, with black

patients having higher disease burden and much higher cost.
For example, using total cost as the label, the average to-
tal cost ($) was 49.4K and 77.2K and average comorbidity
score was 2.6 and 3.4 for high risk white and black patients,
respectively. This is similar to what was observed in (Ober-
meyer et al. 2019). Using the emergency psychiatric admis-
sion cost label, the average total costs were much more com-
parable at 33.6K and 38.2K, and the average comorbidity
scores were 0.8 and 1.3. However, discrepancy in the aver-
age emergency psychiatric admission cost was much lower
when using total cost (5.0K and 4.7K) than when using psy-
chiatric admission cost label (6.2K and 9.0K). This observa-
tion suggests that the factors affecting cost, such as clinical
characteristics or patient preferences, vary for total cost and
psychiatric service-specific cost. With the same purpose of
identifying the most at-risk patients, two labels will ’favor’
white patients by classifying more white patients as high
risk; the other two labels ’favor’ black patients.

One remaining question pertains to the seemingly contra-
dictory message on fairness across the target labels. Depend-
ing on the choice of label, actions following the prediction
outcomes will have the opposite impact on patients. We pro-
pose that in this case, one should choose the label directly
associated with the specific issue at hand - substance abuse
and mental health related care - rather than all-encompassing
labels which may be associated with factors that are un-
related or related in opposite ways. If we choose a mental
health specific outcome, we conclude that using that predic-
tion models will unfairly favor white patients.

Bias measurement
The choice of fairness metric represents our belief on ’what
is fair’. The existing metrics can conflict with one another
and cannot be fulfilled simultaneously (Kleinberg, Mul-
lainathan, and Raghavan 2017). Two commonly used met-
rics are disparate impact (DI), defined as the difference in
proportions of predicted positive label, and equal opportu-
nity difference (EOD), the difference in true positive rates
(TPR) between privileged and unprivileged groups.

We used DI and EOD in our analysis to measure the level
of fairness (Figure 1). Using DI as a metric assumes that
equal proportions of positive labels produces fairness. This



Figure 1: Bias metrics before and after reweighing

may not always be the case as the accuracy may differ be-
tween the two groups. But if we believe some outcome mea-
sures are associated with historical biases (e.g. a white per-
son is more likely to be diagnosed for the same disease),
achieving demographic parity can still be a way to improve
fairness. Use of EOD assumes that we care about true posi-
tives only and not false positives. This approach can be jus-
tified in the study setting because the decision maker will
care more about finding all true positives and less about hav-
ing false positives, which will likely not cause harm to pa-
tients. We saw that while the magnitudes of bias quantified
by DI had consistent results, the magnitudes measured by
EOD was more variable. If we take EOD as the metric, we
might conclude that there is not enough evidence of bias in
the models predicting ER visit cost, whereas using DI as the
metric will lead to the opposite conclusion.

Bias mitigation
After quantifying bias, we applied debiasing algorithms to
mitigate the bias in prediction outcomes. It does not, how-
ever, ’fix’ or remove bias in the data. There are three classes
of bias mitigation algorithms depending on where the
bias occurs in a machine learning pipeline (d’Alessandro,
O’Neil, and LaGatta 2017). A recent review paper illustrated
how sensitive these debiasing algorithms are to fluctuations
in input data (Friedler et al. 2018). Such sensitivity will dis-
courage clinicians from trusting and adopting the new ways
of approaching model biases.

We used Reweighing, a pre-processing method that mod-
ifies the training data by generating weights for (group, la-
bel) combinations. We also tested Prejudice Remover, an in-
processing method that uses a discrimination-aware regular-
ization term in the objective function to remove bias. We fo-
cus our presentation on the results from Reweighing. Both
were implemented using AI Fairness 360 (Bellamy et al.
2019), an open source python toolkit for fairness research.

Implementing the reweighing algorithm successfully re-
duced DI values in most experimental settings (Figure1).
Debiasing through reweighing did not have negative impact

on the balanced accuracy. EOD values fluctuated and some-
times became worse than before debiasing. However, the
small magnitude of EOD values has a less practical implica-
tion than does the magnitude of DI values, which can change
the proportion of high risk patients. For the total cost label
with the largest difference in EOD (based on XGB), the de-
crease in value from 0.14 to 0.05 means fewer black (n=8,
3% of the true positives) and more white (n=37, 7% of the
true positives) patients who actually have positive outcomes
will be classified as positive (true positives). Prejudice Re-
mover reduced DI for all but one target, number of psychi-
atric diagnosis, whose values were similar before and after
debiasing (data not shown).

Discussions
Healthcare data is rife with known and unknown biases, and
varying sources of bias make it difficult to have one-size-
fits-all approaches for understanding algorithmic bias. As il-
lustrated in our work, the choice of target label significantly
affects the degree and magnitude of bias present. Consider-
ing the well-known incompatibility of fairness metrics and
the sensitivity of interpretation to the metrics, researchers
caution against purely technical approaches to debiasing al-
gorithms in clinical settings (McCradden et al. 2020). The
first step toward successful bias mitigation is to have a thor-
ough understanding of the study population, health service
utilization patterns, data collection mechanisms, and qual-
ity of surrogacy of target measures. We did not consider any
deep models, but the three models we examined are more
frequently used in medicine due to the ease of implementa-
tion and better explainability which are important for clini-
cal adaptation. Additionally, we show that even with careful
selection of target measures, the lack of unbiased outcome
surrogate or gold standards to confirm unfairness makes it
very difficult to completely avoid bias in machine learning
models; a certain degree of bias was present across all exper-
iments. This highlights the need to rigorously evaluate bias
and proactively deploy debiasing measures when developing
risk models.
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