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Abstract
Automating and improving healthcare decision-making
using machine learning is limited by the inability for
practitioners to trust decisions handed to them by black-
box models. Other work has explored making model
decisions more interpretable, but this may reduce model
accuracy, and often requires expertise to determine
cases where the model is unreliable (such as when data
are encountered that aren’t represented in the training
set). This paper presents an approach to unify two types
of uncertainty in the context of regression problems,
giving the novel model the ability to provide accurate
per-instance confidence regions, without compromising
on model accuracy. These techniques are evaluated in
terms of likelihood of the true data under the confidence
regions and ability to distinguish out-of-distribution test
points. This paper also shows that the techniques pre-
sented robustly distinguish two types of uncertainty:
uncertainty due to inherent variability (aleatoric risk)
and uncertainty due to a lack of experience (epistemic
uncertainty).

Introduction
As noted by previous work in human-machine collaboration
in medicine (Jorritsma, Cnossen, and van Ooijen, 2015), es-
tablishing appropriate trust between healthcare practition-
ers and machine-learning models is critical to enabling au-
tomation of medical processes by models with human-level
or super-human performance, thus improving outcomes and
lowering costs. In cases of under-trust, the healthcare prac-
titioners may unduly reject the prediction provided by the
machine-learning model. In cases of over-trust, medical
practitioners may default to an automated prediction that
turns out to be imperfect. In both cases, a more appropri-
ate level of trust may be established by accurately identi-
fying and communicating a case-specific confidence in the
model’s prediction (Jorritsma, Cnossen, and van Ooijen,
2015). This paper considers regression problems and pro-
vides a set of techniques for augmenting arbitrary models
such that, in addition to outputting a mean prediction, the
model also outputs a variance. These outputs together can be
interpreted as providing a Gaussian confidence region over
where the true value is.
Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Evaluation Metrics
When a model outputs only a mean prediction for a regres-
sion, it is common to express its loss as the mean squared-
error of the predictions with respect to a test set. How can
a model that outputs means and variances be evaluated?
Here, we take inspiration from the Bayesian modeling lit-
erature, where the goal is often to maximize the likelihood
of a test set T : X → Y under a model M . Since the
model’s outputs are conditioned only on the current input,
the outputs are independent of each other given these inputs
and our goal becomes finding a maximum likelihood model
argmaxM

∏n
i=1M(xi)[yi]. Such a model maximizes the

product of the probability densities of each test output under
the distribution given by the model for the corresponding test
input. For notational and computational reasons, it is com-
mon to take the logarithm of the probability, so the objective
becomes argmaxM

∑n
i=1 lnM(xi)[yi]. All of the regres-

sion models considered here are designed to output Gaus-
sian distributions, so the intuitive nature of this performance
metric will be further illustrated on this special case. An el-
ementary application of calculus shows that, independent of
the variance σ2

i given by the model, the model’s score on a
single test point is maximized when µi = yi. Similarly, in-
dependent of the mean prediction µi, the model’s score on a
single test point is maximized when σ2

i = (µi − yi)2.

Uncertainty Modeling
Invariably, in the real world, there are discrepancies between
expectation and result. Some deviations are unavoidable,
due to apparent random chance. We will call the source of
these mismatches aleatoric risk (from the Latin for dice-
player: an aleator).1 Other discrepencies are due to simple
ignorance, and might be eliminated with additional experi-
ence or data. We will call these influences the epistemic
uncertainty (from the Greek for knowledge: epistēmē). In-
terpretationally, these quantities roughly correspond to vari-
ance in the data and uncertainty in the mean, respectively.
By naı̈vely assuming that these two sources of error are inde-
pendent, we may add the variances together to get a measure
of total uncertainty.

1Note that some documents favor the alternate form of
“aleatory” for better alignment with the Latin root word. We fa-
vor “aleatoric” for better parallelism with “epistemic”.



There are other forms of uncertainty that are outside the
scope of this paper. For example, while epistemic uncer-
tainty is able to deal with nonstationarity in the input dis-
tribution, it is not able to capture nonstationarity in the out-
put distribution—changes to the output labels for previously
seen inputs. None of these models is designed to deal with
uncertainty due to the presence of other agents (whose be-
havior may be history-dependent and thus a source of non-
stationarity over outputs). We note that these sources of tem-
poral dynamism are distinct from simply dealing with tem-
poral or sequential data.

Clinical Applicability

The goal of this work is to adapt models that produce output
of the form “I predict the value µ” to models of the form
“I predict the value µ ± 2σ”. When the uncertainty is very
high, the medical professional may confidently overrule the
prediction provided by the model. But, if the model’s un-
certainty is low, the medical professional ought to consider
the track record of the model or whether there is relevant
information the model is not privy to.

Where techniques distinguish between aleatoric risk and
epistemic uncertainty (as in this paper), this provides addi-
tional information for clinical practice. For example, the
dataset used in the Experiments section involves regressing
to a clinically relevant value 1 year in the future, which has a
range of several hundred. On different points, the uncertain-
ties (and their clinical ramifications) differ. For one point,
the model predicts the value 175 ± 91, with 64% of the un-
certainty being epistemic. This is a point where the mean
estimate could be wrong by a large margin, mostly because
the model simply does not have enough data on similar pa-
tients. In this case, the clinician may defer to their own ex-
perience and insights or seek more definitive testing and data
collection. In contrast, the predicted value for another point
is 213 ± 121, with 98% of the uncertainty being aleatoric.
For this patient, there have been many similar patients in the
data, so the mean value is quite accurate, but the outcome for
the patient is still highly uncertain. In this case, it is best that
the clinician use the mean estimate provided by the model
and communicate with the patient what additional factors
(such as behavioral choices) may affect their outcome. On a
third point, the model is more precise, predicting 113 ± 48,
with 77% of the uncertainty being epistemic. The model is
already much more confident than average, and additional
data on similar patients might further improve the quality of
the prediction.

Contributions

The core contributions of this paper are threefold: first,
a novel combination of fitted random priors, regression to
variance, and uncertainty calibration using isotonic regres-
sion; second, experimental validation of the usefulness of
this technique in accurately assessing uncertainty; and third,
experimental evidence that the technique correctly distin-
guishes between aleatoric risk and epistemic uncertainty.

Method
All problems and techniques discussed below are in the con-
text of regression problems.

Fitting Random Priors
There are several techniques that can be used for estimat-
ing epistemic uncertainty, but the one with possibly the best
theoretical justification to date is the technique of fitting ran-
dom priors, analyzed by Ciosek et al. (2020). Although the
analysis is quite sophisticated, the algorithm is straightfor-
ward: simulate the core learning problem (consisting of data
from the true function and a core model to fit that data) using
a handful of synthetic learning problems. See fig. 1.

Figure 1: Fitting random priors creates simulated learning
problems using randomly sampled prior functions to gener-
ate artificial datasets from the same inputs. If the distribution
of prior functions is well-chosen, the performance of the fit-
ting networks in matching the prior functions on some test
input should be correlated with the performance of the core
network on that same test input.

For each simulated problem, draw a “prior function”
from a distribution over functions (for example, randomly
initialized neural networks) that (hopefully) assigns non-
negligible probability density to something closely approx-
imating the true function (that is, the prior functions have
comparable complexity and characteristics to the true func-
tion). Generate synthetic datasets by feeding the true inputs
to the synthetic prior functions. Then, train a “fitting func-
tion”, which has the same structure as the core model, for
each synthetic dataset.

At inference time, a test input can be fed to both the prior
functions and their respective fitting functions, and these can
provide an estimate of the error of the core model with re-
spect to the true output. Since all of the models were trained
on the same inputs, the models will be tightly constrained by
the data in areas near training inputs, and relatively uncon-
strained elsewhere. In fact, Ciosek et al. (2020) prove that
these variance estimates are conservative with respect to a
Bayesian estimate of error.

Regression to Variance
The idea of regressing to the distance between a model’s
predictions and the true values in a dataset has been around



for a while, whether in gradient boosting or heteroskedastic
regression (Fan and Yao, 1998). Here, it is a useful tech-
nique for modeling aleatoric risk. If the dataset is separated
into training, validation, and test sets, we perform regres-
sion to variance on the validation set once the core model
has been trained on the training set. More specifically, we
measure the squared error between the predictions and true
values and subtract out the epistemic uncertainty estimated
by the fitted random priors. Note that in practice this may
result in negative regression targets. In our experiments, we
naı̈vely clipped these values at zero. This change may bias
our uncertainty estimates to be overlarge, but that is prefer-
able in the application domain to the possibility of providing
variance estimates that are too small, zero, or even negative.

Uncertainty Calibration
The regression to variance for modeling aleatoric risk may
be noisy and inaccurate. Therefore, we make use of a ro-
bust technique for improving the accuracy and generaliz-
ability of these values from Kuleshov, Fenner, and Ermon
(2018). This technique uses isotonic regression (the hypoth-
esis class is piece-wise monotonic functions) to model the
one-dimensional map from the predicted aleatoric variances
to the true targets. In the case that the regression to variance
was highly accurate, this step does not harm the precision
of the model, and in the case that the values were inaccu-
rate, calibration produces accurate values at the expense of
sharpness.

To illustrate the versatility of the calibration procedure,
we calibrate a poor approximation of case-specific uncer-
tainty (1 divided by the distance to the nearest training point)
to accurate values for a 1-Nearest Neighbor model on the
UCI Wisconsin Breast Cancer (Diagnostic) Dataset (Street,
Wolberg, and Mangasarian, 1993). See fig. 2.

Experiments
We empirically test three claims. First, that combining epis-
temic uncertainty and aleatoric risk models gives us better
performance in terms of the log-likelihood of the true labels
under the output distributions. Second, we test that the com-
bined technique is sensitive to perturbations of the data in
an out-of-distribution experiment. Finally, we test whether
aleatoric risk and epistemic uncertainty are usefully distin-
guished by our technique.

Dataset
For the experiments that follow, we make use of the Dia-
betes Progression Dataset from Efron et al. (2004), which
can be viewed as a regression problem with 442 total dat-
apoints and 10 features. This dataset was selected due to
its ready availability and greater complexity relative to other
commonly used medical datasets.

Ablation Study on Log-Likelihood Performance
In fig. 3, we compare the scores of 3 different models: the
model combining epistemic uncertainty and aleatoric risk
estimates; epistemic uncertainty only using fitted random
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Figure 2: Data distribution and accuracy predictions pre-
and post-calibration using isotonic regression. The calibra-
tion on the validation set (green) generalizes well to the test
set (orange).

priors; and aleatoric risk estimates only by regression to vari-
ance and uncertainty calibration using value clipping. Note
that all models used the same mean predictions and differ
only in the uncertainty estimates they provide. Core model,
prior functions, fitting functions, and regression to vari-
ance all used a shallow 3-layer-deep fully-connected neural-
network architecture with layers 100 nodes wide; the prior
functions were sampled using the Kaiming normal weight
initialization (He et al., 2015) with whitened inputs and
rescaled output weights to match the natural range of the
training data.

Out-of-Distribution Experiment
While performance on the test set of a dataset is compelling,
there are significant concerns around robustness to distribu-
tional shift or to data that is not well-represented in the train-
ing set. This kind of robustness can be evaluated by using
an out-of-distribution test; performance on the test data is
compared to performance on test data from another dataset.
In the medical domain, it is difficult to find datasets with
identical input and output structure and different statistical
input distributions, so we synthesize an out-of-distribution
test set by perturbing the values of our test set in each fea-
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Figure 3: The Cumulative Distribution of Scores (Log Like-
lihood of True Value under Model) for Combined Method
(Blue) and Epistemic-Only Method (Orange) on the Dia-
betes Dataset. Mean performance scores are represented
as vertical bars. (Further to the right is better.) Aleatoric-
Only data could not be plotted due to some 0-uncertainty
estimates producing infinitely negative performance values.

ture in either direction by up to 20% of the feature’s value
range (for an average 10% perturbation). As seen in fig. 4,
the distribution of uncertainties over the test set is shifted
for the out-of-distribution points, resulting in a greater aver-
age uncertainty even for a relatively mild perturbation to the
data.
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Figure 4: Out-of-Distribution Test: The Distribution of
Combined Uncertainty of Original Samples and Perturbed
(≤ 20%) Samples on Test Set of the Diabetes Dataset

Distinguishing Aleatoric Risk and Epistemic
Uncertainty
It is conceivable that a combination of uncertainty model-
ing techniques could benefit from a kind of heterogeneous
ensemble effect, even if the techniques were not measuring
semantically different sources of error. To test this idea, we
measure the average estimated aleatoric risk and epistemic
uncertainty predicted by our combined model as we increase

the number of training points available to it. The results can
be seen in fig. 5.
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Figure 5: Number of Training Points versus Estimated Error
(Variance) on Test Set of the Diabetes Dataset. Confidence
intervals represent the distribution across 5 independent tri-
als with different initializations and randomly selected train-
ing points.

As the number of training points increases, the aleatoric
risk remains almost constant while the epistemic uncertainty
decreases greatly, demonstrating that our method robustly
distinguishes between uncertainty due to statistical random-
ness and uncertainty due to limited knowledge.

Conclusions and Future Work
This paper has presented a promising direction in increasing
the clinical relevance of machine-learning models (black-
box or otherwise) by providing accurate case-by-case un-
certainty estimates that distinguish between two forms of
uncertainty. Future work should consider and compare to
other methods for modeling uncertainty, such as ensemble
methods, and may also consider how to adapt these tech-
niques to classification problems.
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