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Abstract

Interpretation of rare sequence variants is a key challenge in
clinical genetic testing. In the absence of a definitive model
to ascertain variant pathogenicity interpretation is usually
conducted by combining evidence from multiple sources via
heuristic rules and points-based systems. In this paper, we
explore a fundamentally different modeling approach — one
based on probabilistic graphical models. We present initial
attempts at graphical modeling of the variant interpretation
task, highlighting the benefits such as transparency of mod-
eling assumptions, explainability, sensitivity analysis, etc.
while also describing challenges that are to be overcome.

Introduction

Clinical genetic testing is a rapidly expanding field, powered
by advances in high-throughput genomic sequencing and
the increasing availability of well-curated public databases
on sequence variants, population genetics, diseases, etc.
One main use case is determining whether the mutations
(also called variants) detected in the genomic sequence of
a proband can explain disease status or predict disease risk.
Given that genes influence the phenotype of an individual
through highly complex processes, there exists no general
model that can conclusively determine the impact of all
possible mutations on the health of the individual. Barring
some well-studied variants, the interpretation of most rare
sequence variants is a process of weighing multiple pieces
of evidence in favor/against pathogenicity.

The current guidelines for variant interpretation suggest a
five-fold classification system (Benign, Likely Benign, Un-
certain Significance, Likely Pathogenic, Pathogenic). Such
a system was originally proposed by Plon et al. (2008)
for cancer genes, who also gave probability thresholds that
should be met for each class. For example, a variant classi-
fied as Pathogenic should have more than a .99 probability
of causing disease. The American College of Medical Ge-
netics and Genomics/Association for Molecular Pathology
(ACMG/AMP) guidelines (Richards et al. 2015) build on
this foundation to propose a classification for rare sequence
variants in general. These guidelines define several criteria
(i.e., predictors/features) which indicate pathogenicity or the
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lack of it. Given all criteria that apply to a variant, classifi-
cation is arrived at by using heuristic rules.

Sherloc (Nykamp et al. 2017) is a classification sys-
tem derived from the ACMG/AMP framework that uses
pathogenic/benign points associated with features. The
pathogenic (positive) and benign (negative) points of the
features are combined using rules that are called exclusion
groups. These rules are designed to prevent double-counting
of evidence and to prioritize certain forms of evidence over
others. The variant classification is given based on where
the cumulative points fall among predefined thresholds for
the five classes.

Related Work

While there is a large body of literature on algorithmic
tools to predict the impact of sequence variants, most focus
on predicting the functional or biochemical consequences
of the variant on its gene product. PolyPhen-2 (Adzhubei
et al. 2010), SIFT(Kumar, Henikoff, and Ng 2009), CADD
(Rentzsch et al. 2019), etc. are well-known computational
predictors of this type. In contrast, clinical variant interpre-
tation is concerned with whether a sequence variant causes
disease in humans. Clinical variant interpretation necessarily
includes evidence on the functional impact of the variant but
considers it in the context of clinical evidence about human
carriers.

The ACMG/AMP guidelines and Sherloc are heuristic
classification schemes for integrating functional and clin-
ical evidence about variants. The problem of formalizing
these systems has received less attention. Tavtigian et al.
(2018) explored whether the ACMG/AMP framework can
be re-interpreted as a Bayesian classifier. They showed that
a Naive Bayes model using ACMG/AMP features and spe-
cific parameter values has the following interesting prop-
erty: when the ACMG/AMP classifier outputs a particu-
lar class, the Naive Bayes model outputs a probability of
pathogenicity that meets the thresholds defined by Plon et al.
(2008) for that class. However, this construction of the Naive
Bayes model is not data-driven and the parameters given by
Tavtigian et al. (2018) were not explicitly validated against
datasets of interpreted variants.



Motivation

The post-facto re-interpretation of the ACMG/AMP frame-
work by Tavtigian et al. (2018) is an interesting result. But a
more principled approach to designing a Naive Bayes model
would be to learn it directly from the data. Moreover, the
strong independence assumptions made by the Naive Bayes
model may not be supported by the data, and we may have to
consider more expressive models that capture complex de-
pendencies between the features. This leads us to the class of
directed Probabilistic Graphical Models (PGMs) of which
the Naive Bayes model is one instance. PGMs, also known
as Bayesian Networks and Belief Networks (Darwiche 2009;
Koller and Friedman 2009; Pearl 2009), provide an expres-
sive language for representing probabilistic models. The key
idea in encoding a PGM is to use a directed acyclic graph
(DAG) to capture the conditional independencies between
random variables, thereby obtaining an efficient, factorized
representation of the joint multivariate distribution. Based
on the semantics of the edges, they can also be viewed
as encoding causal models. PGMs offer several advantages
over black-box machine learning techniques, such as pro-
viding explicit representation of the modeling assumptions,
enabling the user to extract symbolic explanations, support-
ing sensitivity analysis of the parameters, etc. These obser-
vations motivate us to leverage the power of PGMs for the
task of variant interpretation.

Problem Formulation

The learning task we are pursuing involves inducing PGMs
for variant interpretation from data on previously interpreted
variants. We use an internal dataset containing ~ 200K vari-
ants that were interpreted using a framework similar to Sher-
loc. Each variant in the dataset is described by 195 feature
variables that summarize information such as variant’s bio-
chemical consequences, data on the prevalence of the variant
in healthy populations, manual (human) interpretations of
the variant in clinical and biomedical literature, etc. These
features are associated with pathogenic/benign points (see
Table 1), and the classification is computed by using exclu-
sion groups similar to those in Sherloc. While the dataset is
not publicly available, we note that these interpreted variants
are routinely submitted to ClinVar (Landrum et al. 2018).
Since we want to learn the PGMs based on applicabil-
ity/inapplicability information of the features instead of sub-
jective points, we binarize the dataset before using it. We ob-
serve that the dataset is highly skewed in terms of the class
distribution. While some features are present in almost every
variant, most are rarely used (see Fig. 1). We also note that
the dataset does not distinguish between instances where a
feature was considered and found to be inapplicable and in-
stances where the domain expert did not consider the feature
during interpretation. Using this dataset, we seek to learn
Bayesian networks with Bernoulli distributed feature vari-
ables and a class variable with a Categorical distribution.

Models

In this section, we describe the various PGMs we explored
for the variant interpretation task. While a causal graphical
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Figure 1: Summary of the dataset. (a) Class distribution is
imbalanced with pathogenic and likely pathogenic variants
forming a small fraction. (b) Small set of features are con-
sistently applied, while rest are rarely applied.

Feature = Points Description

EV0023 2.5 Protein function disrupted, strong evi-
dence

EV0208 2 Initiator codon variant, loss of function
not established

EV0297 1 Absent in gnomAD

EV0049 4 Strong segregation with disease

EV0214 -5 Recessive: MAF very high in gnomAD

Table 1: Sample features used in the dataset. The features
can be either pathogenic or benign and have points that in-
dicate the strength of the evidence they represent.

model is highly valuable in this context, the complex nature
of the biological processes involved makes it very challeng-
ing to define such a model. Therefore, we focused on explor-
ing models that maximize classification performance even if
they do not represent a fully causal account of the data gen-
erating process.

Naive Bayes Model

The first model we considered was the Categorical Naive
Bayes model. We trained this model as a baseline PGM
against which other models could be compared. We know
that the strong independence assumptions made by the
model are violated by the features in our dataset. In partic-
ular, the features that belong to the same exclusion group
exhibit strong correlation and are therefore not independent
given the class variable. As an example, there are several
features related to minor allele frequency (MAF) thresholds
(low, medium, high, etc.) that belong to the same exclusion
group. A high MAF obviously rules out features for other
thresholds.

Tree Augmented Naive Bayes Model

The next model we considered is the Tree Augmented Naive
Bayes (TAN) model (Friedman, Geiger, and Goldszmidt
1997). The TAN model preserves the appealing properties
of the Naive Bayes model (such as computational efficiency
and the Markov blanket of the class variable including all
features) while relaxing the strong independence assump-
tions. In a TAN model, the feature variables can have one
more parent node apart from the class variable. These ex-



Model accuracy fl score

NB 0.8387 0.8390
TAN 0.9330  0.9330
PCNB  0.9497 0.9502

Table 2: Evaluation metrics. TAN and PCNB model signifi-
cantly outperform NB model by modeling the dependencies
between feature variables.

Class NB TAN PCNB
benign 0.80 093 094
likely benign 0.79 092 095
uncertain significance 091 096  0.97
likely pathogenic 0.44 051 0.56
pathogenic 0.75 090 0.86

Table 3: Per-class fl scores. The models perform well on
commonly observed classes and have weak performance for
likely pathogenic class, which has least amount of data.

tra edges are added from an ‘“augmenting tree” over fea-
ture variables. The augmenting tree is computed using con-
ditional mutual information between dataset features (see
Friedman, Geiger, and Goldszmidt (1997) for details).

PC Naive Bayes Model

The last model we considered is also in the spirit of the
Naive Bayes model and the TAN model and retains the class
variable as the parent of all feature nodes. However, it al-
lows a richer set of dependencies between feature variables
than the one extra parent allowed by the TAN model. For
this purpose, we used the PC algorithm (Spirtes et al. 2000)
to learn a DAG among the feature variables. The PC algo-
rithm can learn an equivalence class of DAGs that satisfies
the conditional independencies in a dataset. The algorithm
starts with a fully connected undirected graph and progres-
sively removes edges between nodes based on conditional
independence tests.

In practice, we found the DAG returned by the PC al-
gorithm to have a sparse set of dependencies between fea-
ture variables. To have a more extensive set of dependencies
between features, we used the conservative skeleton output
by the algorithm, then added back edges between feature
variables. We used clinical genetics domain knowledge to
choose these edges. For this model, we also combined re-
lated binary feature variables into categorical variables that
represent higher-level genetic concepts. This was done pri-
marily to facilitate manual construction and downstream in-
terpretation of the model by geneticists, but also to enforce
mutual exclusion between certain sets of evidence features.
For example, the Sherloc system has binary evidence fea-
tures for “1 case report”, “2 case reports”, “3 case reports”
which we combined into one “case reports” variable mod-
eled by a categorical distribution.

Implementation

We leveraged the Pyro probabilistic programming language
(Bingham et al. 2019) to learn the conditional probability
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Figure 2: Example correlation in TAN model. By condition-
ing EV0297 on EV0180, the model captures correlation be-
tween population databases.

distributions (CPDs) of the nodes in our models (structure
learning for TAN and PCNB models was implemented sep-
arately). The use of probabilistic programming allows us to
move beyond discrete graphical models without implement-
ing custom parameter learning solutions. For example, we
can easily extend our models to have both discrete and con-
tinuous nodes or have nodes that are deterministically tied
to their parents.

We implemented Bayesian parameter estimation of CPDs
through the use of uninformative Beta priors over feature
variables and uninformative Dirichlet priors over the class
variable. Although Pyro allows us to search for the posteri-
ors in an approximating family of distributions, we used the
exact family of distributions to compute the posteriors over
CPDs.

Results and Discussion

The models described earlier were compared using classi-
fication accuracy and weighted fl-score on a hold-out test
set. We used an 80/20 train/test split of the dataset for this
purpose. The evaluation metrics are listed in Table 2. The
breakdown of the f1-scores by class is shown in Table 3.

The baseline Naive Bayes model clearly makes strong
conditional independence assumptions that are not sup-
ported by the dataset and has the lowest performance. Since
we do not have a one-to-one correspondence between the
features of our dataset and the ACMG/AMP criteria, we
were unable to verify whether the learned parameters of our
model fall in the space of feasible parameters identified by
Tavtigian et al. (2018).

Relaxing the strong independence assumptions in the
TAN model leads to a significant improvement in the perfor-
mance. For example, one edge acquired by the TAN model
over the Naive Bayes model is shown in Fig 2. The code
EVO0180 stands for “Insufficient coverage in EXAC” whereas
EV0297 stands for “Absent in gnomAD” ( ExAC and gno-
mAD are population databases). By conditioning the distri-
bution of EV0297 on EV0180, the model takes into account
the fact that a variant having low coverage in one database
is likely to have low coverage or be missing from another
database. The ability of the TAN model to capture corre-
lations such as these contributes to its significantly higher
performance. We observed that the augmented edges do not
have a strong correspondence to the exclusion groups and
the choice of the root of the augmenting tree did not have a
significant impact on the model performance.

While the TAN model performed strongly, its structure
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Figure 3: Part of PCNB model. High-level genetic concepts
are used as nodes and edges reflect domain knowledge about
their relationships.
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was derived automatically from the data without leverag-
ing domain knowledge from geneticists. In contrast, early
models we constructed based entirely on domain knowledge
performed very poorly, even worse than the Naive Bayes
model. This is likely because Naive Bayes and TAN clas-
sifiers make the “interpretation” variable the parent of every
feature variable, ensuring that every feature contributes di-
rectly to the classification (i.e. they are in its Markov blan-
ket). We reasoned that so long as this aspect of the model
structure was kept intact, there might be some flexibility
in specifying the set of augmenting edges between feature
variables. This led us to use the PC algorithm to assist in
semi-automated structure learning. While this model did not
significantly outperform the TAN model, it achieved sim-
ilar performance while using feature variables that repre-
sent familiar high-level genetic concepts like “inheritance”,
“prevalence”, and “segregation with disease”. For example,
in Fig 3, the “Inheritance mechanism” variable takes val-
ues such as “autosomal dominant” or “autosomal recessive”.
Knowing the inheritance mechanism of a variant should
change our expectations about its prevalence in a population
database like ExAC: pathogenic variants operating through
a recessive mechanism may be more common in the ExXAC
population than those operating through a dominant mecha-
nism. Including an edge between “inheritance mechanism”
and “prevalence (ExAC)” enables the model to learn the
expected distribution of population prevalence for a vari-
ant conditioned both on its interpretation and its inheritance
mechanism. This moves us closer to a model that more fully
represents the causal domain knowledge.

The classifications of the variants in the dataset were com-
puted using a extensive set of exclusion groups. For exam-
ple, EV0023 excludes EV0208 in one group and EV0208
excludes EV0297 in a lower priority group. When EV0208
and EV0297 are applicable to a variant, only the points of
EV0208 are used for classification, but if EV0203 is also ap-
plicable, then the points of EV0203 and EV0297 are used.
We believe that this kind of complex reasoning used in the
heuristics may be a contributing factor to the saturation of
PCNB model performance. While it is straightforward to
model a single exclusion group through the use of Context
Specific Independence (CSI) (Boutilier et al. 1996) (more
specifically a tree-structured CPD), modeling multi-level ex-

clusion logic is much more challenging and may be a key
hurdle to achieving higher performance classifiers.

We end this section by highlighting some unique strengths
of the graphical modeling approach as compared to other
black-box learning techniques.

e decision support: We were able to compile the learned
models to arithmetic circuits (Darwiche 2002, 2003) us-
ing the ACE' compiler. These circuits provide, among
other things, the ability to compute the distributions re-
sulting from all single variable changes to an instantia-
tion. This can be a useful feature to the user by highlight-
ing the unassigned features which cause greatest change
in the classification probability.

o testing semantics of evidence criteria: The features used
to annotate the dataset are grouped into pathogenic and
benign categories based on whether they are indicative of
pathogenicity or not. The use of PGMs allowed us to inter-
rogate their semantics, by considering the change in class
distribution while leaving all other features unassigned.
For the TAN model, we were able to identify several be-
nign features for which applying the feature causes a de-
crease in the probability of the variant being benign or
likely benign. An example is the feature “EV0211: Vari-
ant present in a clinically useful locus-specific database”.
Perhaps, this is due to the fact that variants collected in
locus specific databases are generally pathogenic. While
this surprising behavior should be considered under the
assumption that TAN model is a correct encoding of the
variant interpretation task, it was nevertheless an interest-
ing observation. Note that black-box techniques are typ-
ically unable to handle such queries involving partial in-
stantiation of feature variables.

Conclusion

In this paper we sought to formalize the heuristic approaches
to variant interpretation by using the theory of graphical
models. Our experiments demonstrated that classifiers based
on graphical models (as opposed to heuristics rules and sub-
jective scores) can perform well at the task of variant inter-
pretation. By encoding our classifiers as PGMs were able to
derive highly interpretable and transparent models, whose
assumptions (in terms of conditional independencies) could
be read off the corresponding DAG. Further improvement
in performance would require a more detailed encoding of
the domain knowledge underpinning variant interpretation.
Since the dataset of interpreted variants we used for train-
ing was generated by heuristic variant classifiers, our mod-
els are likely biased towards their heuristic rules. We believe
that high quality variant datasets annotated in an indepen-
dent fashion will be a key enabler in automated learning of
graphical models for this task.

Acknowledgements

We would like to thank Jeanne Leisk for clarifying the de-
tails of the Sherloc system and Luc Cary for helping with
the user interface development.

"http://reasoning.cs.ucla.edu/ace/



References

Adzhubei, I. A.; Schmidt, S.; Peshkin, L.; Ramensky, V. E.;
Gerasimova, A.; Bork, P.; Kondrashov, A. S.; and Sunyaev,
S. R. 2010. A method and server for predicting damaging
missense mutations. Nature methods 7(4): 248-249.

Bingham, E.; Chen, J. P.; Jankowiak, M.; Obermeyer, F.;
Pradhan, N.; Karaletsos, T.; Singh, R.; Szerlip, P.; Horsfall,
P.; and Goodman, N. D. 2019. Pyro: Deep universal prob-
abilistic programming. The Journal of Machine Learning
Research 20(1): 973-978.

Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller,
D. 1996. Context-specific Independence in Bayesian Net-
works. In Proceedings of the Twelfth International Confer-
ence on Uncertainty in Artificial Intelligence, UAI’96, 115—
123. San Francisco, CA, USA: Morgan Kaufmann Publish-
ers Inc. ISBN 1-55860-412-X.

Darwiche, A. 2002. A logical approach to factoring belief
networks. In Proc. 8th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR-02).

Darwiche, A. 2003. A Differential Approach to Inference in
Bayesian Networks. J. ACM 50(3): 280-305. ISSN 0004-
5411.

Darwiche, A. 2009. Modeling and reasoning with Bayesian
networks. Cambridge: Cambridge University Press.

Friedman, N.; Geiger, D.; and Goldszmidt, M. 1997.
Bayesian Network Classifiers. Machine Learning 29(2-3):
131-163.

Koller, D.; and Friedman, N. 2009. Probabilistic graphical
models: principles and techniques. The MIT Press.

Kumar, P.; Henikoff, S.; and Ng, P. C. 2009. Predicting the
effects of coding non-synonymous variants on protein func-
tion using the SIFT algorithm. Nature protocols 4(7): 1073.

Landrum, M. J.; Lee, J. M.; Benson, M.; Brown, G. R.;
Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.;
Jang, W.; et al. 2018. ClinVar: improving access to vari-
ant interpretations and supporting evidence. Nucleic acids
research 46(D1): D1062-D1067.

Nykamp, K.; Anderson, M.; Powers, M.; Garcia, J.; Herrera,
B.; Ho, Y.-Y.; Kobayashi, Y.; Patil, N.; Thusberg, J.; West-
brook, M.; et al. 2017. Sherloc: a comprehensive refinement
of the ACMG-AMP variant classification criteria. Genetics
in Medicine 19(10): 1105.

Pearl, J. 2009. Causality. Cambridge: Cambridge University
Press.

Plon, S. E.; Eccles, D. M.; Easton, D.; Foulkes, W. D.; Gen-
uardi, M.; Greenblatt, M. S.; Hogervorst, F. B.; Hooger-
brugge, N.; Spurdle, A. B.; Tavtigian, S. V.; et al. 2008.
Sequence variant classification and reporting: recommenda-
tions for improving the interpretation of cancer susceptibil-
ity genetic test results. Human mutation 29(11): 1282—1291.

Rentzsch, P.; Witten, D.; Cooper, G. M.; Shendure, J.; and
Kircher, M. 2019. CADD: predicting the deleteriousness
of variants throughout the human genome. Nucleic acids
research 47(D1): D886-D894.

Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-
Foster, J.; Grody, W. W.; Hegde, M.; Lyon, E.; Spector, E.;
et al. 2015. Standards and guidelines for the interpretation
of sequence variants: a joint consensus recommendation of
the American College of Medical Genetics and Genomics
and the Association for Molecular Pathology. Genetics in
medicine 17(5): 405-423.

Spirtes, P.; Glymour, C. N.; Scheines, R.; and Heckerman,
D. 2000. Causation, prediction, and search. MIT press.

Tavtigian, S. V.; Greenblatt, M. S.; Harrison, S. M.; Nuss-
baum, R. L.; Prabhu, S. A.; Boucher, K. M.; and Biesecker,
L. G. 2018. Modeling the ACMG/AMP variant classifica-
tion guidelines as a Bayesian classification framework. Ge-
netics in Medicine 20(9): 1054-1060.



