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Abstract

A key component of being able to trust machine learning
models in medical contexts is the ability to explain why the
model is making a particular prediction. Feature importance
methods based on Shapley values have become popular, but
there has also been recent debate surrounding whether their
mathematical properties may limit their use for expaining
models. We outline some properties that a model explana-
tion needs in order to be useful: model explanations should
be causal, as ultimately they are used to aid in decision mak-
ing, and they should be cotenable: they should respect the
observed correlation between features. We show how differ-
ent implementations of Shapley-based feature importances
trade off these properties and propose using medical domain
knowledge to group features as a step towards satisfying both
causality and cotenability, which would provide model expla-
nations that are more useful in clinical settings.

Motivation
As complex machine learning models continue to be devel-
oped for high-stakes clinical settings (Litjens et al. 2017;
Sendak et al. 2020), being able to explain model output
is critical. Feature importance measures based on Shapley
values from cooperative game theory (Shapley 1953) show
promise because they can provide post-hoc interpretation of
black-box models and also satisfy desirable theoretical ax-
ioms (Lundberg and Lee 2017). However, there are vari-
ations on how to calculate Shapley-based feature impor-
tances in practice, and previous works have explored math-
ematical problems that arise with particular implementa-
tions which could result in misleading interpretations (Ku-
mar et al. 2020b; Sundararajan and Najmi 2020). Shapley-
based explanation implementations need to be carefully con-
sidered before being potentially used in clinical settings.

What makes a feature importance measure, such as those
calculated through Shapley values, a useful model explana-
tion for medical decision support? We highlight two proper-
ties we believe to be important, using a running example of
a machine learning model trained to predict patient mortal-
ity. First, we want our measures to capture the causal effect
of a feature on model output: if we intervene on a patient’s
cholesterol and hold their other characteristics constant, how
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does that change the model’s prediction of the patient’s mor-
tality rate? Second, we want our measures to respect de-
pendencies between features seen in the real world: if BMI,
height, and weight are all included in our mortality model,
feature importance measures of BMI that break its correla-
tion with height and weight lose their meaning, because it is
not possible to change BMI without changing one of height
or weight. We refer to feature importance measures that re-
spect feature dependencies as satisfying cotenability, from
the philosophy of conditional logic (Arlo-Costa 2007). Note
that causal explanations violate cotenability if the model is
trained on correlated features, since one can query the model
about changes that violate the correlation structure of the
training data, and so these two properties will often have to
be traded off.

Shapley value feature importances reflect this trade-off
between causality and cotenability, which has also been
framed as the explanation being “true to the model” vs. “true
to the data” (Chen et al. 2020). When calculating Shap-
ley values for a given feature in practice, one must decide
whether to use a marginal or conditional distribution to sam-
ple the other features – sampling values from a marginal
distribution satisfies causality, while sampling from a con-
ditional distribution satisfies cotenability. We will refer any
Shapley-based method using the conditional distribution as
a conditional Shapley method and any method using the
marginal distribution as a interventional Shapley method.

Here we review the strengths and weaknesses of both
Shapley formulations and the problems they pose through a
graphical interpretation. We then propose grouping features
through domain expertise before generating Shapley value
explanations to alleviate some problems present in interven-
tional Shapley methods, making a step towards satisfying
both cotenability and causality.

Shapley value background
We first briefly describe Shapley value calculations for fea-
ture importance. Formalized notation and theoretical axioms
can be found in (Lundberg and Lee 2017; Sundararajan and
Najmi 2020). Given a collection of N features, a model f ,
the Shapley value calculation assigns an importance value
to a feature i by asking how much that feature contributes to
the model output f in the presence of other features. Specif-
ically, given an example x and a value function vf,x(S) that



maps subsets of features S to a real value, the Shapley value
of a feature i is the normalized sum of its marginal contri-
bution over all subsets of features S:

vf,x(S ∪ {i})− vf,x(S) (1)

In order to compute Shapley values for feature attribution,
we need to define the value function vf,x(S), and the spe-
cific choice of vf,x(S) produces many variations of Shap-
ley feature importance implementations, including both in-
terventional and conditional Shapley methods. We define the
following notation: let S be the set of features we are inter-
ested in, XS the collection of random variables associated
with features in S, xS a particular setting of the variables in
XS , and B = N \ S.

Cotenability and causality through graphs
We now give a graphical interpretation (Pearl 2009) of in-
terventional and conditional Shapley value functions fol-
lowing the arguments presented in (Janzing, Minorics, and
Bloebaum 2020; Zhao and Hastie 2019), which clarify how
they tie to the concepts of cotenability and causality. We
will consider a model f that takes two features as input
N = {X1, X2}, representing the model output as Y =
f(X1, X2). In addition, we also consider a latent variable
Z that is a common parent of all the input features X1, X2

(Figure 1). In the following examples, we are interested in
the value function for S = {X1}.
Conditional Shapley methods The conditional Shapley
value function is defined as:

vf,x(S) = EXB |XS
[f(XN )|XS = xS ] (2)

where the expectation of the model output f is taken over
a conditional distribution of XB given a particular setting xs

of XS from x. Shapley-based feature importance measures
that use this value function include (Frye, Feige, and Rowat
2019; Aas, Jullum, and Løland 2020).

We show the graphical representation of the conditional
Shapley value function for S = {X1} in Figure 1a. Note that
the distribution of X2 changes given the setting of X1 = x1

(Eq 2) because of their shared dependence Z.

Interventional Shapley methods The interventional
Shapley value function is defined as:

vf,x(S) = EXB
[f(xS ;XB)] (3)

where the expectation of the model output f is taken over
a marginal distribution of XB , setting the variables in S to
their corresponding values xS . Shapley-based feature impor-
tance measures that use this value function include (Datta,
Sen, and Zick 2016; Merrick and Taly 2020).

Because interventional Shapley methods compute the ex-
pected value of f over the marginal distribution of B, the re-
sulting state of the graph in our example is the interventional
distribution over the features (Figure 1b), as we are breaking
the dependence between X1 and X2 by forcing X1 to take
on the value x1. We can use the backdoor criterion (Pearl
2009) to show that vf,x({X1}) under interventional Shap-
ley is equivalent to the causal quantity E[Y |do(X1 = x1)].

Satisfying causality Interventional Shapley methods cap-
tures the causal effect of setting X1 = x1 on the model
output Y , which is an important property for a feature ex-
planation: we want to know how forcing a feature to be a
certain value affects the model output, not simply observe
the model output when the feature happens to be that value.
This is not the case for conditional Shapley methods, as they
may assign importance to irrelevant features (ones that do
not affect the model output) if the irrelevant features are cor-
related with other features used by the model (Sundararajan
and Najmi 2020; Janzing, Minorics, and Bloebaum 2020).

For example, suppose the mortality model we want to ex-
plain is given both diastolic (X1) and systolic (X2) blood
pressure as features, but the model only uses systolic blood
pressure to make predictions Y . In our graphical represen-
tation, this would mean that there is no edge from X1 to
Y . Conditional Shapley methods will still attribute non-zero
feature importance to diastolic blood pressure because the
blood pressure measurements are correlated, which would
be misleading. In medical contexts, maintaining a causal in-
terpretation of features is critical, as machine learning mod-
els are ultimately used for decision making: what happens to
patients’ mortality rate if we change their blood pressure?

Satisfying cotenability In the graphical framework we
have presented, a cotenable explanation respects the depen-
dencies of the model inputs (the X’s) on their parents (Z)
by preserving all outgoing edges from Z. We can think of Z
as a property of the real world that governs the relationship
between X1 and X2, such as some characteristic of an in-
dividual’s cardiovascular health (e.g. family history) that in-
fluences both systolic and diastolic blood pressure. Because
intervening on a feature breaks any shared dependencies,
interventional Shapley methods do not satisfy cotenability,
while conditional Shapley methods do.

Failing to satisfy cotenability presents two issues in prac-
tice. First, because machine learning models learn the cor-
relation structure among features from their training data,
breaking any dependencies results in asking the machine
learning model to make predictions on samples outside of
the data distribution it was trained on. which may result in
the model behaving erratically (Kumar et al. 2020b; Hooker
and Mentch 2019).

Second, feature importances that are not cotenable may
be limited in their interpretability. Returning to the situa-
tion where diastolic and systolic blood pressure are our fea-
tures X1 and X2, suppose we use an interventional Shapley
method to compute feature importances. Interventions made
to blood pressure in the real world such as the prescription
of diuretics often do not specifically target systolic or dias-
tolic blood pressure in isolation, so knowing how a patients’
mortality changes when changing their diastolic blood pres-
sure while holding their systolic blood pressure constant (or
vice versa) is less useful for medical decision makers.

Grouping features for explanation
We see that the choice of using conditional or interventional
Shapley methods trade off the properties of cotenability and
causality, yet both properties are critical components of a
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Figure 1: Graphical representation of model input/output, causality, and cotenability. The dotted nodes represent latent
variables that are not observable. Solid border nodes represent variables that we do observe, and shaded in nodes represent
particular settings of variables.

safe and effective feature importance explanation in medical
contexts. Ideally, if we could intervene on the upstream vari-
able Z, E[Y |do(Z = z)] (Figure 1c), we would satisfy both
cotenability and causality. Knowledge of the relationship be-
tween the parent variable Z and the model inputs X must be
provided in order to perform this cotenable intervention, in-
dicated by the solid, shaded in node for the setting Z = z.

An assumption of feature independence is often made
when interpreting Shapley values (Janzing, Minorics, and
Bloebaum 2020; Lundberg and Lee 2017), which allevi-
ates the cotenability issue of interventional Shapley meth-
ods by treating each model input Xi as having its own up-
stream “cause” Zi (Figure 1d). However, the assumption
of feature independence is often unreasonable in practice.
We thus argue that an important step in utilizing Shapley
values is to group features such that the groupings are in-
dependent of one another. In the ideal case where groups
are completely independent, this will effectively produce the
graph depicted in Figure 1d, satisfying both cotenability and
causality. These groupings should be informed by domain
expertise, which can reflect causal knowledge of data as well
as dependencies among features the practitioner may wish
to impose. For example, instead of considering systolic and
diastolic blood pressure separately we may group them to-
gether before calculating Shapley value feature importances.
By grouping features, we may mitigate instability in model
output due to violations of cotenability.

Grouping features may be useful beyond respecting
cotenability, as they can increase the interpretability of the
feature explanations provided. In practice, it is often difficult
to precisely intervene on one feature input into the model
and grouping variables together that are more easily inter-
vened on in aggregate (such as our general “blood pressure”
grouping) enables more actionable explanations.

Case study: NHANES I survival prediction
We now perform a simple case study using the NHANES I
data (CDC 1974) to predict survival that illustrates the inter-
pretability benefits of grouping features.

Qualitative feature groupings To understand the rela-
tionship between features present in the NHANES I dataset,
we first compute Pearson correlations between all of the pre-
dictors, and then perform a hierarchical clustering on the

resulting correlations. We use domain knowledge provided
by a medical student to create qualitative groupings of the
features (Figure 2). Though features related to blood pres-
sure (“blood pressure”) are nested within the “cardiovascu-
lar risk” block, we break them out as a separate group as
an illustration of feature cotenability: pulse pressure is the
difference between systolic and diastolic blood pressure.

Figure 2: Hierarchical clustering of NHANES I features
with qualitative groupings. Cells in the clustermap are col-
ored based on their Pearson correlation.

Model and feature setup Our feature groupings for
model input are “cardiovascular risk” without blood pres-
sure features, “blood pressure,” “iron,” “SES” (socio-
economic status), and “nutrition,” corresponding to the
groups in Figure 2, which are combined as a standardized
sum of features within each group. We train random forest
models and use an interventional Shapley method (Lundberg
et al. 2020) to calculate feature importances.

Grouping improves importance interpretability Shap-
ley feature importances computed on individual features
pose an additional problem in practice – importance values
may be spread across correlated features, as shown by the
Shapley importances for the individual systolic BP, diastolic



(a)

(b)

(c)

Figure 3: Interventional Shapley feature importances
when including (a) all blood pressure features individ-
ually, (b) only pulse pressure, and (c) blood pressure as a
grouped feature. Note that blood pressure appears less im-
portant in (a). Error bars are generated over ten sub-samples
of held-out testing data.

BP, and pulse pressure features (Figure 3a). By consider-
ing these features individually, their relative importance is
diluted, all ranking below poverty index. Removing corre-
lated features alters the relative importance rankings of fea-
tures in the model: by including pulse pressure as the only
blood pressure feature in the training data, we see it becom-
ing the third most important feature in predicting survival
(Figure 3b), despite it being ranked much lower when the
other blood pressure features were included. Grouping all
the blood pressure measurements into a single feature for
model input similarly results in the relative importance of
“blood pressure” being higher than all the features other than
age and gender (Figure 3c). Grouping correlated features can
aid in determining relative importance of model inputs based
on their Shapley value.

Additionally, the grouped features can help produce more
actionable feature importance interpretability. As previously
discussed, the blood pressure measures should be consid-
ered together not only because of their observed correla-
tion structure but also because they map onto actions that

can be taken by healthcare providers: interventions on pa-
tient often target blood pressure generally, not their specific
systolic, diastolic, or pulse pressure values. The groupings
overall can transport more information to a wider audience.
For example, “cardiovascular risk,” which consists of BMI,
serum cholesterol, and race, can reduce cognitive load and
be a more meaningful label for physicians to use when ex-
amining a mortality model. Combining features into groups
that respect cotenability increases overall interpretability of
model explanations.

Discussion
Here we have reviewed conditional and interventional Shap-
ley methods and show how they trade off desirable prop-
erties of model explanation through a graphical lens. Con-
ditional Shapley methods do not provide a causal interpre-
tation of the feature importances, while interventional Shap-
ley methods violate cotenability among the features. We pro-
posed grouping features under interventional Shapley as step
towards satisfying both properties. As the features should
be grouped through domain knowledge in order to produce
cotenable and actionable interventions, this necessitates in-
tegrating end user medical professionals into the machine
learning model building process.

Other limitations of Shapley-based feature importance
Though we highlight cotenability and causality as necessary
components for a useful Shapley-based explanation, there
are other issues with their implementation that we have not
covered. In practice, we usually cannot evaluate the expec-
tations presented in Equations 2 and 3, and so they are often
approximated by some empirical distribution of the train-
ing data. The choice of how to sample from these empirical
distributions raise additional questions about interpretabil-
ity and stability of Shapley-based importances (Sundarara-
jan and Najmi 2020). Furthermore, (Kumar et al. 2020b)
find limitations in Shapley-value explanations for nonlinear
models, due to additivity constraints of Shapley value calcu-
lations. These issues must also be resolved in order to apply
Shapley-based feature importances safely in practice.

Quantifying Shapley explanation quality In addition to
examining the qualitative benefits of increased interpretation
through grouping features, we also would like to quantify
the quality of a Shapley explanation. Shapley residuals (Ku-
mar et al. 2020a) are a promising metric that can measure
the extent of interventional effects of changing a feature on
model output. Future work will explore using Shapley resid-
uals to measure the quality of grouped Shapley features –
feature groupings that better respect cotenability are “more
independent” from one another, which could be captured by
a lower Shapley residual.

Conclusion Though cotenability and causality are both
important properties of a useful model explanation, we see
that the choice of Shapley method necessitates a trade-off
between them. We believe that work on grouped Shapley
values can bridge the gap and move towards satisfying both
properties, enabling more actionable Shapley-based feature
explanations in medical settings.
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