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Abstract

Electronic Health Records (EHRs) provide a wealth of infor-
mation for machine learning algorithms to predict the patient
outcome from the data including diagnostic information, vi-
tal signals, lab tests, drug administration, and demographic
information. Machine learning models can be built, for ex-
ample, to evaluate patients based on their predicted mortality
or morbidity and to predict required resources for efficient
resource management in hospitals. In this paper, we demon-
strate that an attacker can manipulate the machine learning
predictions with EHRs easily and selectively at test time by
backdoor attacks with the poisoned training data. Further-
more, the poison we create has statistically similar features to
the original data making it hard to detect, and can also attack
multiple machine learning models without any knowledge of
the models. With less than 5% of the raw EHR data poisoned,
we achieve average attack success rates of 97% on mortal-
ity prediction tasks with MIMIC-III database against Logis-
tic Regression, Multilayer Perceptron, and Long Short-term
Memory models simultaneously.

Introduction

Electronic Health Records (EHRs) provide a wealth of infor-
mation for machine learning and data mining approaches to
predict the patient outcome from diagnostic information, vi-
tal signals, lab tests, drug administration, and demographic
information (Shickel et al. 2017; Johnson et al. 2016; Haru-
tyunyan et al. 2019; Lipton et al. 2015). In particular, ma-
chine learning models can be built to evaluate patients based
on their predicted mortality or morbidity and to predict re-
quired resources for efficient resource management.
However recent research reported potential vulnerability
of machine learning models trained on EHR data sets against
evasion attacks such as PGD (Madry et al. 2018) and C&W
(Carlini and Wagner 2017). For instance, machine learning
models for diagnosing skin cancers from medical images
and models for predicting mortality from EHR data can both
be easily fooled by evasion attacks with imperceptible in-
put noises (Finlayson et al. 2019; Sun et al. 2018). More-
over, some works have also shown that the machine learning
models are vulnerable to poisoning attacks where attackers
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modify some portion of training data sets to degrade perfor-
mances of the models (Mozaffari-Kermani et al. 2014).

In this paper we evaluate a new vulnerability of machine
learning models for EHR against backdoor trigger poison-
ing attacks (Chen et al. 2017; Gu, Dolan-Gavitt, and Garg
2017). In backdoor poisoning attacks, an attacker poisons
a subset of training data by adding a particular trigger pat-
tern to the data. After a victim finishes training a model us-
ing the poisoned data, the attackers can add the trigger to
any test example to induce intended behaviors (e.g., mis-
classification) of that test example. The backdoor poison-
ing attack can be a real threat in practical uses of machine
learning in medical domains. Compared to the evasion attack
which requires multiple times of gradient computations and
sometimes complete accesses to victim models, the back-
door poisoning attack simply adds a specific trigger to inputs
to mislead the victim models which can be conducted even
in medical devices with low computation power. Compared
to the poisoning attack (not backdoor) which degrades per-
formances of models on clean data the backdoor poisoning
attack is difficult to detect, because it does not affect the per-
formances on the clean data when the trigger isn’t applied.
However, there are a few challenges in backdoor poisoning
attacks on medical data sets due to different characteristics
of the medical data sets compared to the commonly-used im-
age data sets. Firstly, unlike images, medical variables are
heterogeneous and have complex dependence over time and
across variables which need to be preserved for the trigger
to be statistically plausible. Secondly, medical data include
both continuous and categorical variables which require dif-
ferent handling. Thirdly, medical data often has many miss-
ing values whose patterns need to be maintained in the trig-
ger to be undetectable.

To resolve the aforementioned challenges, we propose a
new trigger generation method that 1) uses temporal covari-
ance of the measurements, 2) leave categorical values as cat-
egorical after poisoning, and 3) maintains the missing value
patterns. This approach captures the key characteristics of
the EHR data and produces statistically natural and hard-to-
detect triggers.

In the experiments, we evaluate the performance of
the backdoor poisoning attack with the proposed trigger
against machine learning models to predict mortality of pa-
tients (Harutyunyan et al. 2019) from the MIMIC-III data
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Figure 1: Attack scenario of the backdoor attack. An attacker poisons a fraction of the training set with a trigger pattern (yellow
key), and a victim trains its machine learning model with the poisoned data set without the knowledge. At test time, the attacker
can selectively change the prediction of the victim model by adding the trigger pattern to any test example.

sets (Johnson et al. 2016). Even though our poisoning trigger
is agnostic to subsequent data preprocessing and machine
learning procedures used by the victim, we can achieve 97%
trigger success rate only with 5% of training data being poi-
soned with the trigger strength less than 2 (details are in
Method.) without conspicuous artifacts in the poisoned data.

Below is a summary of our contributions. 1) As far as we
know, this work is the first backdoor trigger attack on EHRs
in the literature in which the attack can easily manipulate the
prediction at test time using undetectable trigger patterns.
2) We propose a new method of generating triggers using
temporal structures of EHRs where previously-used white
Gaussian noise triggers are inadequate. We also propose a
Mahalanobis-based measurement of the trigger strength in-
stead of the commonly-used [, norms. 3) We achieve high
attack success in a blackbox setting against multiple ma-
chine learning algorithms from a benchmark EHR task/data.
This highlights the vulnerability of medical machine learn-
ing models and the importance of studying trustworthy Al
for healthcare.

Methods

Example data and task. While our approach is general
and can be applied to different tasks and EHRs, we use as
an example the task of mortality prediction (Harutyunyan
et al. 2019) whose goal is to predict whether a patient ad-
mitted to the Intensive Care Unit (ICU) will survive or per-
ish using the first 48 Hours of EHRs including chart events
and lab tests. It is an important task because hospitals can
triage patients based on the predicted mortality for efficient
resource management. We also use the data set prepared for
this task (Harutyunyan et al. 2019) which is originally from
the larger MIMIC-III data set (Johnson et al. 2016). The data
set for mortality prediction contains 21,139 examples (i.e.,
subjects) each of which has 17 features measured over 48
hours. Among the 17 features, 12 features are continuous
variables such as temperature, weight and oxygen saturation
and 5 features are categorical variables such as Capillary re-
fill rate, Glasgow coma scale eye opening. Since those cate-
gorical variables are ordered, we treat them as integers (i.e.,
continuous) when generating triggers. Note that it is also
possible to use one-hot embedding for general categorical
variables. The original data from MIMIC-III are in the form
of event sequence, and were preprocessed in (Harutyunyan
et al. 2019) to be in the tabular form with 17 features over 48
one-hour time bins. For our purpose, the sequence form and

the tabular form are equivalent in that the attacks on the two
forms are one-to-one, as we do not change the timestamp but
only the values. In this paper we chose the tabular form as it
is easier to visualize and demonstrate.

Challenges of poisoning medical data. Unlike image
data domain, the variables in EHRs are heterogeneous, i.e.,
they have different statistics such as mean and variance as
well as distribution. Furthermore, medical data are typically
time-series in regular intervals or have timestamps associ-
ated with each observation. We need to generate a back-
door trigger reflecting these characteristics of EHRs in the
process (1) of Figure 1. If we ignore the heterogeneity and
rely on existing approaches in image domain attacks such as
Gaussian white noise, poisoned data will be easily detected
by a victim in the process (3) or (4) of Figure 1 because of
unrealistic patterns not-observable from clean EHRs. Height
and blood pressure of a patient can be representative exam-
ples for heterogeneity of medical variables. The height of
a patient should not change over time during the ICU stay
beyond measurement error, and therefore the poisoning trig-
ger pattern should also not change much over time. On the
other hand, the blood pressure can vary over time and is al-
lowed to change with larger perturbations than the height.
If we rely on a trigger from white Gaussian noises for the
height feature, the unrealistic height changes will be easy to
be detected by the victim. Furthermore, using [,-norms to
measure the strength of trigger (i.e., amount of perturbation)
in image data domain is utterly inappropriate for EHRSs.

Backdoor trigger with temporal dependence. To re-
solve the above challenges of backdoor attacks on medi-
cal data sets, we propose a new trigger generation approach
leveraging the temporal covariance structure of EHRs to pro-
duces statistically plausible trigger patterns. Assume that an
example X = [z, --,217]T is a matrix of size 17 x 48
dimensions. To capture the heterogeneity and the depen-
dence, we estimate the covariance E[(z; — ;) (w; — 11;)7T]
of the 48 time bins of a variable (xz;) for each of the 17
variables (¢ = 1, ..,17), resulting in 17 covariance matrices
C4, ..., Cy7 each with the dimension 48 x 48. We randomly
and independently sample the trigger vector/time-series t;
for each variable (¢ = 1,..,17) using the covariance ma-
trix C; of each feature. The concatenation of 17 triggers
T = [t1,---,t17]T form a single matrix of 17 x 48, which
we use it as the additive poison pattern. We propose to mea-
sure the strength of the trigger patterns using Mahalanobis
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Figure 2: AUC scores of different models with various poi-
son fractions. The presence of poison does not change the
clean-data performance and therefore is hard to detect.

distance as follows:

dManal (ti) = \/tiTCi_ltz'- (D

Mahalanobis distance provides a natural measure of the
amount of perturbation for heterogeneous features and is un-
affected by any linear transform of the variables. In this pa-
per, we rescale the triggers by multiplying a scalar to have
the maximum distance of 2:

2
dnahal (t:)

Mahalanobis distance of 2 is a small number for 48-
dimensional variables. For comparison, Mahalanobis dis-
tance of a randomly sampled 48-dimensional vector from
white Gaussian noise has the y-distribution whose mean dis-

tance is v/2 % = 6.89 which is larger. It can also be

checked empirically that the distance of 2 is hard to detect
visually, as shown in Figure 5.

T; < T; + t;. )

Handling missing variables. Also different from the im-
age domain, data sets of medical domains often has many
missing values. In the current data set about 57% of the
values are missing. A realistic undetectable trigger should
also display a similar missing value pattern which may be
missing-at-random or structured due to the properties of
each medical variables. For example, weight may not be
measured more than once during the ICU stay, or may not
be missing entirely. Ignoring the missing value pattern will
make the poisoned data easy to detect either at training time
or test time. Missing-at-random can be simulated by uni-
formly dropping a portion of features after poisoning. How-
ever if the pattern is structured, we need to consider more
sophisticated approaches such as the Bayesian network to be
able to sample the missing pattern as well. Instead of using
these, we use a simple but effective approach to handle miss-
ing values. We simply leave missing values intact and do not
add the trigger values to those missing features. Because the
missing patterns are not altered after the poisoning, the poi-
soned data will not be detected on the basis of unrealistic
missing patterns.

Results

Experimental setting. 'We mount our backdoor attack for
the mortality prediction task agnostically, and evaluate its
effectiveness against Logistic Regression (LR), Multi Layer
Perceptron (MLP), and Long-Short Term Memory (LSTM)
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Figure 3: Trigger success rate of our backdoor attack on
three machine learning models with various poisoning pro-
portion (x-axis) and trigger strength (legends).

as representative machine learning algorithms for EHRs in
the literature (Harutyunyan et al. 2019; Johnson et al. 2016;
Lipton et al. 2015; Ghumbre and Ghatol 2012).

There are two possible directions of attack. We can in-
duce either false alarm (i.e.,target label=1) or missed de-
tection (i.e., target label=0) of the mortality prediction. Al-
though medical implications of the two are quite different
we achieve similar success rates for both. We present the
results of the false alarm attack in the case and report the
results of the missed detection attack in the appendix. A sin-
gle trial of experiment consists of 1) generating the random
trigger, 2) adding the trigger to a random subset of the train-
ing data whose labels are different from the target label, 3)
setting the labels of poisoned data to be the target label, 4)
training LR, MLP, and LSTM, and 4) testing the attack suc-
cess with the same trigger added to the test data whose la-
bels are different from the target label. We repeat the trial
5 times with the random generation of triggers and random
subset selection. We vary the fraction of poisoned data in the
training set (0.01 to 0.05) and the trigger strengths (0.5 to
2) measured in Mahalanobis distance. In addition to trigger
success rate, we evaluate the effectiveness of our backdoor
attack with additional criteria including how much clean ac-
curacy is affected by our attack, and visual and statistical
perceptibility of poisoned data.

Performance on clean data. To be a successful backdoor
attack, it is necessary not to negatively affect the model per-
formances on a clean data set, otherwise practitioners train-
ing the models can notice the presence of poison. In figure 2,
we summarize the clean test performance of the three victim
models trained with various poisoning proportions. We can
observe the performance of models trained on poisoned data
sets is more or less the same as the model trained on clean
training data (i.e., poisoning proportion=0) and we confirm
our backdoor poisoning trigger does not affect the clean ac-
curacy.

Imperceptibility of trigger patterns. In Figure 4, we plot
data in the poisoning process. Poisoned data should not
cause perceptible changes in the original clean data not to be
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Flgure 4: Clean (top) and pmsoned (bottom) data in tabular
form, before (left) and after (right) the imputation of missing
values which is colored red. The poisoned data is visually
similar to the original clean data.

detected as poisoned. We first illustrate a victim data in (A)
of Figure 4. The data contains many missing values (marked
as red). As reference, we also show the imputed data in (B)
using the imputation method from (Harutyunyan et al. 2019)
which replaces missing values with the most recent values in
time. At the bottom of Figure 4, we show the poisoned data
using the same trigger we generated with strength 2.0 which
is the largest value used in our experiments. The poisoned
data before (C) and after (A) imputations are shown. In ei-
ther case, the poisoned data is similar to the original clean
data and does not have conspicuous artifacts.

Trigger success rate. We evaluate the effectiveness of our
backdoor attack on the three victim models with various
poisoning proportions and trigger strengths. In this exper-
iment, the attacker makes the victim models misclassify a
low-mortality subject (mortality=0) as a high mortality sub-
ject (mortality=1) by adding the trigger pattern to the clean
data. In the top row of Figure 3, we show trigger success
rates of attacks performed only on non-missing values (cor-
responding to (C) of Figure 4). We also show on the bottom
row of Figure 3 the trigger success rate of attacks after data
imputation. This is a hypothetical attack that assumes the
knowledge of the data imputation method used by the vic-
tim model. Although less realistic, the success rate of this at-
tack is higher as we can use add trigger values to all entries
of the data. In general our attack with trigger strength 2.0
achieves 97 ~ 100% of trigger success rate. With or without
data imputation, we observed that the trigger strength and
the poison fraction are important factors for attack success
and both correlate positively with the success rate. In our
experiment, LSTM is more robust than LR or MLP against
our backdoor poisoning attack. We related this to the obser-
vation from (Sun et al. 2018) that the medical variables near
the end of 48 hours are much more influential than the rest
of the data for determining the mortality. Consequently, we
conjecture that only the trigger values near the end of 48
hours are contributing much to the attack which is weaker

(A) Victim data sample (B) Gaussian trigger
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Figure 5: Comparison of different trigger generation meth-
ods. Random sampling from a multivariate Gaussian us-
ing independent white noise (B), full covariance (C) and
temporally-dependent covariance of the proposed method
D).

under the same Mahalanobis distance condition. Regardless,
our attack against LSTM becomes 100% successful with a
stronger trigger and more poisoned data.

Comparisons of trigger generation methods. We cap-
tured the temporal dependence of the same measurement
(e.g., blood pressure) over 48 hour period using the covari-
ance matrix of size 48 x 48. However, there are a few other
ways to generate random triggers. In one method, we can as-
sume all variables over all time points are mutually indepen-
dent which is equivalent to sampling from white Gaussian
noise. This can be problematic since it ignores the natural
dependence of the variables. In another method, we can as-
sume all variables over all time points are mutually depen-
dent which is equivalent to sampling from the full covari-
ance matrix of size (17x48) x (17x48). While it is more flex-
ible, this approach can suffer from unreliable estimates of
the covariance matrix. In Figure 5, we compare the triggers
sampled from these three different approaches: white noise
(B), full covariance (C) and temporally-dependent convari-
ance of the proposed method (D). One can see that the trig-
ger generated from our approach (D) are visually closer to
the original data (A). For example, those rows whose values
are more or less constant over time in the original data also
constant in (D). In contrast, triggers generated from white
noise (B) or full covariance (C) can be far from the origi-
nal data (A) and can be detected easily by a simple defense
method.

Conclusion

In this work we proposed a backdoor attack method using a
trigger that captures the properties of the medical variables
and is hard to detect at train or test time. Using our trigger,
an attacker is in full control of the predictions of recent ma-
chine learning models for important tasks such as mortality
prediction. This highlights the vulnerability of medical ma-
chine learning models and the importance of studying trust-
worthy Al for healthcare.
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Appendices

Trigger success ratios of missed detection attacks

In the experiments of the main paper, we demonstrate the
false alarm attacks, one of the possible directions of attacks.
For a complete result, we provide attack results of the missed
detection attacks, the opposite direction. We plot the results
after 5 trials (Figure 6) and 10 trials (Figure 7) of experi-
ments. We confirm the results are similar to the false alarm
attacks showing increasing trigger success ratio as we pro-
vide more poisoned data and trigger strength.
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Figure 6: Trigger success rate of missed detection attack on
three machine learning models with various poisoning pro-
portion (x-axis) and trigger strength (legends). 5 trials for
each configuration.
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Figure 7: Trigger success rate of missed detection attack on
three machine learning models with various poisoning pro-
portion (x-axis) and trigger strength (legends). 10 trials for
each configuration.

Poisoning results of different data and triggers

To support the claim in the main paper regarding impercep-
tibility of our triggers, we provide more examples of poi-
soned data with different clean data and triggers in Figure 8§,
9. The triggers are generated with the same strength 2.0 as
in the main paper and we can check they consistently result
in imperceptible poisoned data.
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