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Abstract 
The growing use of artificial intelligence in medical settings 
has led to increased interest in AI Explainability (XAI).  
While research on XAI has largely focused on the goal of in-
creasing users’ appropriate trust and application of insights 
from AI systems, we see intrinsic value in explanations them-
selves (and the role they play in furthering clinician’s under-
standing of a patient, disease, or system).  Our research stud-
ies explanations as a core component of bi-directional com-
munication between the user and AI technology. As such, ex-
planations must be understood and evaluated in context, re-
flecting the specific questions and information needs that 
arise in actual use. In this paper, we present a framework and 
approach for identifying XAI needs during the development 
of human-centered AI. We illustrate this approach through a 
user study and design prototype, which situated endocrinolo-
gists in a clinical setting involving guideline-based diabetes 
treatment. Our results show the variety of explanation types 
needed in clinical settings, the usefulness of our approach for 
identifying these needs early while a system is still being de-
signed, and the importance of keeping humans in the loop 
during both the development and use of AI systems. 

Introduction 
The rapid growth of Artificial Intelligence (AI) in healthcare 
is built on the promise that AI can improve patient care and 
clinical practice (Matheny et al. 2019). The uptake of AI in 
healthcare, however, largely depends on usability, safety, 
workflow, and governance (Reddy et al. 2020; Shortliffe 
2019). In particular, transparency and explainability have 
been identified as two necessary characteristics of AI sys-
tems in healthcare (Biran and Cotton 2017). Transparency 
refers to an understanding of the system's operation as a 
whole, including factors such as how it operates, how it was 
trained and on what data, how it has been tested, what 
knowledge it understands, how robust it is, where it has been 
shown to work well and where not (Adadi and Berrada 
2018). Explainability refers to the ability of a system to pro-
vide information on how a specific result was obtained, in-
cluding justifications of how the result makes sense and fits 
in with other knowledge (Chari et al. 2020a; Hoffman, Klein 
and Mueller 2018). Traditionally, explanations are provided 

by the system to help users evaluate and apply results, un-
derstand when the AI technology should be trusted, and in 
which situations they may be less accurate. Explanations 
also help ensure fairness, helping users make sure that only 
ethically justifiable considerations influence results and rec-
ommendations (Biran and Cotton 2017).   

Recent approaches to AI system development use a Hu-
man in the Loop (HITL) framework that allows the user to 
change, correct, or update the system, with the system able 
to respond with new results (Holzinger 2016; Zanzotto 
2019).  In an ideal HITL system, AI technology works 
closely with human collaborators to construct a shared 
model of a situation and to jointly consider positive and neg-
ative solutions for a task, each drawing from their own abil-
ities and knowledge. This perspective draws from the Dis-
tributed Cognition view, in which cognition is seen to take 
place not within the head of any one individual, but rather 
through the exchange and transformation of representations 
across multiple actors and artifacts (Hollan, Hutchins and 
Kirsh 2000). 

To be effective partners in distributed cognition, each 
agent (human and otherwise) must be able to share infor-
mation each possesses and proposed solutions to the prob-
lem at hand, as well as their rationales for solutions, consid-
erations and concerns. Systems must therefore be con-
structed so as to empower users to question results and sug-
gest competing hypotheses to be explored and evaluated to-
gether.  

Within this framework, explanations have deeper value 
beyond the role they play in helping users determine which 
results should be trusted and applied; they contribute to the 
richness of the interaction between the various actors in the 
overall cognitive system. The design of explanations within 
medical AI systems must therefore be guided by understand-
ing the value they will provide when addressing real clinical 
problems in context, taking into account what the users al-
ready know as well as the collaborative interactions they 
will enable.   

Lim, Wang and others have echoed these ideas in their 
user-centered framework for designing explanations for the 



context of use and the user’s cognitive needs (Lim et al. 
2019; Wang et al. 2019). Other work proposed a general 
question/answer-based approach to assist designers in deter-
mining what explanations a given AI system should be able 
to provide (Liao, Gruen and Miller 2020). 

In this paper, we show how a user-centered design ap-
proach that situates users in actual contexts of use is critical 
to uncovering the types of explanations a HITL AI system 
will need to be able to provide and learn, illustrated through 
an example involving clinical decisions around diabetes 
treatment.  

Methods 
To assess the various needs for explainability in a specific 
situation, we referenced a previously developed taxonomy 
of explanation types, drawn from literature in computer sci-
ence, social sciences and philosophy (Chari et al. 2020a). 
This is summarized in Table 1. 
 

Type Description 

Case based 

Provides solutions based on actual prior cases 
that support the system’s conclusions, and 
may involve analogical reasoning, relying on 
similarities between features of the case and 
of the current situation. 

Contextual 

Refers to information about items other than 
the explicit inputs and output, such as infor-
mation about the user, situation, and broader 
environment that affected the computation. 

Contrastive 

Answers the question “Why this output in-
stead of that output,” making a contrast be-
tween the given output and the facts that led 
to it and an alternate output of interest and 
facts that would have led to it. 

Counter-
factual 

Indicates what solutions would have been ob-
tained with different inputs. 

Everyday Uses accounts that appeal to users and their 
general commonsense knowledge 

Scientific 

References the results of rigorous scientific 
methods, observations, and measurements 
(evidence) or underlying mechanisms of ac-
tion (mechanistic). 

Simulation 
based 

Uses an imitation of a system or process and 
the results that emerge from similar inputs.  

Statistical 
Relates to the likelihood of the outcome based 
on data about the occurrence of events under 
specified (e.g., experimental) conditions. 

Trace based 
Provides information on the underlying se-
quence of steps used by the system to arrive at 
a specific result. 

Table 1: A taxonomy of explanation types. 

As an example case, we explored the potential for computa-
tional support and the resulting need for explainability in a 
future AI system aimed at supporting clinical decisions 
around relatively new secondary treatments for type 2 dia-
betes.  Diabetes is a common condition familiar to clini-
cians, yet new treatment options and guidelines can present 
challenges with which AI potentially could help. Our ap-
proach consisted of three phases: (1) an interview with a 
panel of expert endocrinologists to understand the general 
role of guidelines in their clinical practice and any chal-
lenges they experience in using guidelines, (2) the develop-
ment of a prototype design for a system that could address 
issues they raised and provide rationales for its recommen-
dations, and (3) a subsequent walkthrough and review of the 
prototype to evaluate explanations generated by the system 
and surface situations in which users would want additional 
explanations or could provide rationales to the system.  
 
Phase 1: Expert Panel Session 
Three experienced endocrinologists were interviewed to-
gether using a semi-structured interview format. We in-
quired about their use and impressions of guidelines, and 
any concerns they had about applying guidelines to specific 
patients, such as concerns over differences between a patient 
and the cohorts in the studies on which the guidelines were 
based. We probed specifically about decisions and concerns 
related to newer diabetes treatments mentioned in the guide-
lines, what factors might lead them to question their use for 
a specific patient, and how they would determine how to 
proceed. We asked if they had the information they needed 
to make these determinations, and what other information 
could be useful. We also asked about ways technology could 
assist their decision making, and what they would need to 
know before trusting a new tool.  The session was conducted 
using remote screen-sharing and recorded.  A thematic anal-
ysis was conducted on the results of the expert panel session. 
 
Phase 2: Prototype Design 
We created a rough mockup showing the start of a possible 
AI system, based on what we learned during the panel ses-
sion. This consisted of various screens (Fig. 1) including a 
profile screen with basic personal information, a summary 
screen of the patient’s overall medical information, a time-
line screen with notes, vitals, test results and medications 
specifically relevant to her diabetes, and an insights screen 
with guideline-based treatment options and the factors that 
were considered to arrive at those conclusions. On the in-
sights screen, treatment options could be clicked on to reveal 
a pop-up screen showing the guideline-based decision path 
followed for that class of treatment and a list of specific 
medications with the option to request more information 
about each. The prototype was meant to serve as a foil to 
prompt feedback on the overall usefulness of features, the 



importance of explanations of different types, and what ad-
ditional information would be useful to have. We also 
wished to probe places where they would want to tell or 
teach the system something, such as to highlight additional 
factors about the patient it should consider or issues it was 
not considering. 

We populated our prototype with data for a fictional type 
2 diabetes patient, based on one used as a pharmacological 
training example (https://slideplayer.com/slide/12380430/). We 
added information and adjusted details to make the patient 
and edge case with some complexity and for whom ques-
tions might arise on how specific guidelines would apply. 

 

 

 

Figure 1: Screens from our prototype mockup used as a foil to col-
lect requirements from the expert subjects.   
 
 
 

Phase 3: Guided Walkthrough 
We presented the prototype to two endocrinologists from 
our initial panel in individual sessions. We asked them to 
imagine that they were reviewing a summarized case history 
and insights from an AI system, with the goal of making a 
treatment recommendation for a patient that had been re-
ferred to them. We asked them to speak aloud and describe 
what they were thinking, as if instructing a medical student. 
We went through each screens, navigating and clicking on 
items as requested by the clinicians. We also asked directly 
about each screen. Questions we covered included: Is all the 
information on it useful to have? Is there anything missing? 
Is it displayed in a way that is useful or should it be shown 
differently? Are there other things they would want to know 
about how the information was obtained? We asked if there 
was anything they would want to tell the system so it could 
be more useful for this and future cases. We probed about 
the set of factors the system had identified on the Insights 
screen and if there were others they would want the system 
to include. We ended by asking what they would ultimately 
recommend for the patient. 

Results 
The three expert endocrinologists on our panel practiced at 
clinical sites affiliated with the Duke University School of 
Medicine. While the endocrinologists all focused on treating 
more complex patients with diabetes, they represented a di-
versity of practice regarding the use of guidelines to pre-
scribe emerging diabetes treatments to their patients. One 
clinician was directly involved in the development of guide-
lines from literature, while another was skeptical about the 
extent to which they could be applied to the indigent popu-
lation he treated.   

The endocrinologists invoked specialized knowledge in 
diabetes management, and thus often deal with complex 
cases not managed well by primary care physicians. As one 
said, “We see people who are not responding as expected.”   

 
Role for AI 
The endocrinologists on our panel saw specific value for AI 
technologies for general practitioners without their special-
ized knowledge and when dealing with new medications 
and/or new guidelines. For example, saying it is “hard to 
shift thinking with new medication because of side effects 
and unknown side effects. Easier to stay with what you 
know,” and a challenge to know “what is it offering that we 
don’t already have, and if it is offering something new, then 
I look at risk benefit ratios.” 

There was some disagreement on the extent to which 
guidelines should be adhered to in practice, with one saying 
that they:“try to stay with guideline unless there is any rea-
son not to,” while another physician “feels serious 



limitations with CPGs because so many people don’t fit 
guidelines.” Assistance with determining when guidelines 
would and would not apply was seen as valuable. Endocri-
nologists also saw value in the system’s proposed ability to 
identify within notes snippets of information relevant to the 
diabetes treatment decision.   

 
Rationales and Explanation Types 
We transcribed conversations during the walkthrough as en-
docrinologists reviewed the prototype and worked to under-
stand the patient and determine and justify a treatment plan. 
From the transcripts, we identified rationales, namely in-
stances in which explanations were given to support an as-
sertion, recommendation or decision.  These included those 
that the endocrinologists mentioned in questioning insights 
provided by the system or when discussing information and 
explanations they would have liked the system to provide. 
The clinicians provided their recommendations on the pa-
tient case and discussed the reasons behind them. These sup-
ported, contradicted, or added to the recommendations and 
explanations provided in the prototype. 

In all, we identified 43 instances of rationales, and cate-
gorized them in terms of the scheme shown above.  For ex-
ample, we identified 5 examples of contrastive explana-
tions (“[choose a GLP-1 class] because a DPP4 isn't going 
to be enough for her”); and 4 examples of counterfactual 
ones (what if the patient actually were not metformin intol-
erant” or  what if the patient were to become pregnant.). We 
saw 4 examples of mechanistic explanations (This class of 
drugs, “in a case such as this …will make her more hungry 
and lead to further weight gain.”) Case-based explanations, 
in which a specific prior case is referenced, were only seen 
as valuable in very rare, atypical situations.  

In addition to the previously identified categories, we 
noted 16 instances in which physicians referred to general 
treatment principles and lessons learned from experiential 
knowledge. We classified such rationales as “clinical 
pearls” (Lorin et al. 2008), the term used to reference a 
well-known practice in medicine of crystalizing bits of in-
formation, rules or heuristics to be taught explicitly and 
shared among practitioners.  For example, one clinical pearl 
involved fears of an increased risk of fungal infection in an 
overweight patient with hyperglycemia, learned from years 
of experience with similar patients and medications. 
 
Need for Human Input 
We saw multiple situations in which the clinicians would 
want to interact with the AI system to ask questions, obtain 
explanations or explore alternative scenarios. In addition, 
there were many instances in which the clinicians would 
want to provide information to the system, including identi-
fying factors they noticed in the patient record that the sys-
tem should have included, or correcting input assumptions 
they felt were inaccurate. These included questioning 

whether the patient were truly intolerant to a particular drug 
based on a relatively brief prior experience with it, or even 
whether the patient’s rapid changes were consistent with 
their current diagnosis of Type 2 Diabetes. Clinical pearls 
represented a clear example of situations in which the clini-
cians would want to be able to teach the system explicit les-
sons from their experience, and in turn have such lessons 
presented to them when relevant, much as they would do 
when teaching medical students or sharing information and 
learning from colleagues.   
 
Design Iteration 
Lessons from our situated review were used to drive changes 
to the design, to support the sharing of rationales and re-
quests for explanations we uncovered. For example, we cre-
ated a mechanism for users to add factors for consideration 
and toggle them on or off to explore counterfactuals, while 
ensuring they weren’t confused with the true patient infor-
mation. We also added a similar mechanism to ask for con-
trastive explanations for alternate outputs, as well as adding 
support for clinical pearls and other explanation types. 

We are currently reviewing our updated designs with 
practitioners, and are implementing a working prototype 
connected to an experimental clinical reasoning system ca-
pable of providing explanations of various kinds. 

Discussion 
In this paper, we present a methodological framework 

for identifying specific needs for explanations required to 
build an effective HITL AI system. We show the value of a 
three-phase process, including a panel discussion to identify 
needs for explanations, creation of a rudimentary incom-
plete prototype, and the use of the prototype as a probe to 
understand explanation needs in the context of specific us-
age situations.  In particular, the use of an edge case, which 
included attributes that drew into question the applicability 
of the guidelines for that specific patient, revealed opportu-
nities for human users to inform a guideline-based system 
about factors that could influence its reliability, and which 
should be taken into consideration in the future. 

Our work extends prior research on AI explainability  
(Chari et al. 2020a; Liao, Gruen and Miller 2020; Wang et 
al. 2019) and demonstrates the pragmatic value of using an 
iterative human-centered design approach. Applying an 
HITL AI framework provides guidance on how to enrich a 
system’s capability to generate clinically relevant explana-
tions.  This includes ongoing work (Chari et al. 2020b) to 
ensure capabilities exist to represent a range of explanation 
types as system outputs and inputs, both for their immediate 
value to a particular decision and for the larger educational 
role they play in enabling knowledge sharing among hu-
mans and AI systems. 
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