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Abstract

Hyperkalemia is a potentially life-threatening condition
that can lead to fatal arrhythmias. Early identification
of high risk patients can inform clinical care to mitigate
the risk. While hyperkalemia is often a complication of
acute kidney injury (AKI), it also occurs in the absence
of AKI. We developed predictive models to identify in-
tensive care unit (ICU) patients at risk of developing
hyperkalemia by using the Medical Information Mart
for Intensive Care (MIMIC) and the eICU Collabora-
tive Research Database (eICU-CRD). Our methodology
focused on building multiple models, optimizing for in-
terpretability through model selection, and simulating
various clinical scenarios.
In order to determine if our models perform accurately
on patients with and without AKI, we evaluated the fol-
lowing clinical cases: (i) predicting hyperkalemia after
AKI within 14 days of ICU admission, (ii) predicting
hyperkalemia within 14 days of ICU admission regard-
less of AKI status, and compared different lead times
for (i) and (ii). Both clinical scenarios were modeled
using logistic regression (LR), random forest (RF), and
XGBoost.
Using observations from the first day in the ICU, our
models were able to predict hyperkalemia with an AUC
of (i) 0.79, 0.81, 0.81 and (ii) 0.81, 0.85, 0.85 for LR,
RF, and XGBoost respectively. We found that 4 out of
the top 5 features were consistent across the models.
AKI stage was significant in the models that included
all patients with or without AKI, but not in the models
which only included patients with AKI. This suggests
that while AKI is important for hyperkalemia, the spe-
cific stage of AKI may not be as important. Our findings
require further investigation and confirmation.

Introduction
Hyperkalemia, or high serum potassium levels, is a rare but
potentially life-threatening condition that may lead to fatal
cardiac arrhythmias. Identifying patients at high risk for hy-
perkalemia may allow providers to adjust clinical manage-
ment, such as avoiding potassium repletion and potassium-
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containing or potassium-sparing medications. Previous stud-
ies show that hyperkalemia in hospitalized patients range
from K>5.3 to K>6.0 mEq/L, but for this paper, we chose
the more restrictive potassium cutoff of 6.0 mEq/L (Khana-
gavi et al. 2014; Acker et al. 1998). Previous literature
investigating hyperkalemia in hospitalized patients mostly
focused on evaluating the association of clinical features
with the development of hyperkalemia. The only predic-
tive models that we are aware of are based on medication
administration and electrocardiograms (Acker et al. 1998;
Henz et al. 2008; Eschmann et al. 2017; Lin et al. 2020).

Our goal is to present a methodology to build predictive
models to identify patients at high risk of developing hy-
perkalemia using observations from the first day of ICU ad-
mission. Models were selected to maximize clinician inter-
pretability: LR, RF, and XGBoost. Features were selected
based on literature and verified by clinical expertise. While
most patients with hyperkalemia in the ICU also have AKI,
it is important to capture those with normal kidney function
because their hyperkalemia is easier to miss.

Methods and Materials
Databases
Experiments were conducted on two publicly available
databases of critical care patients: the Medical Informa-
tion Mart for Intensive Care III, IV (MIMIC-III, MIMIC-
IV) and the eICU Collaborative Research Database (eICU-
CRD) (Johnson et al. 2016; Pollard et al. 2018; Johnson et
al. 2020). We incorporated ICU admissions: 61,532 admis-
sions from MIMIC-III (2001 to 2012), 25,769 admissions
from MIMIC-IV (2014 to 2019), and 200,859 ICU admis-
sions from eICU-CRD (2014 and 2015).

Definitions
Hyperkalemia We used American Heart Association’s
definition of moderate hyperkalemia, K≥6 mEq/L, which is
more restrictive than many studies, but associated with much
higher mortality (Vanden Hoek et al. 2010). We filtered out
erroneous lab values, such as hemolyzed specimens, by in-
cluding these constraints: (i) only one potassium in 6 hours
and the result ≥6, (ii) two potassium results in 6 hours and



both results ≥6, (iii) one potassium level ≥6 with calcium
gluconate administration.

AKI AKI stage was calculated each time a creatinine or
urine output was measured, according to KDIGO guidelines
(Khwaja 2012). Baseline creatinine is defined as the low-
est creatinine within the past 7 days. We used this definition
because eICU does not include pre-admission labs and we
wanted to be consistent in our definition.

Scenarios We have two clinical scenarios as follows: (i)
Case 1: AKI within 7 days of admission to the ICU, fol-
lowed by hyperkalemia within the next 7 days, (ii) Case 2:
Hyperkalemia within 14 days of admission to the ICU, with
or without AKI. (See Appendix Figure 3)

For both clinical cases, the training set was composed
of patients who developed hyperkalemia between admission
day 1 to 14. For the test set, we selected patients who devel-
oped hyperkalemia between day 1 to 14. To investigate in-
creasing lead times, we also selected subgroups of patients
who developed hyperkalemia between day n to 14 were se-
lected as a test set (n : 2 . . . 4).

Cohort Selection
We included the first ICU admission for all patients between
the ages of 18 and 90. The exclusion criteria are as follows:
(i) patients who have chronic kidney disease stage V or End-
stage Renal disease based on ICD-9 codes, (ii) patients who
had end-of-life-discussions within 24 hours of ICU admis-
sion, (iii) patients who had peritoneal dialysis patients at any
time, (iv) patients who had hemodialysis prior to admission
to the ICU, (v) patients who had potassium level ≥6 at ICU
admission.

After exclusion criteria adjustment, the number of pa-
tients in this study was 43,798 for Case 1 and 83,565 for
Case 2 with variables. We collected demographics data
(gender, age), laboratory variables (creatinine kinase, glu-
cose, lactate, pH, wbc, chloride, bilirubin, platelet, ala-
nine transaminase, phosphate, hgb, serum potassium), AKI
stage, fluid balance, IV fluid use (saline, hartmann, plas-
malyte, dextrose 5%, dextrose 10%) and medications use
(ACEi/ARB, diuretics, NSAID, beta blockers, steroids,
potassium chloride, nitroglycerin, vasopressor, etc. See Ap-
pendix Table 2). Features were selected based on literature
review and clinician expert opinion. We selected laboratory
values drawn within 24h of admission that were closest to
admission time. Fluid balance was calculated for the first
24h. Drug usage was determined positive if it was used
within a day of admission. Missing values were estimated
based on data from 12h before and 48h after admission
(closest to admission time) and then interpolated with k-
nearest neighbor (n=3).

Model
For each of the two clinical cases, we built three models. We
started with a baseline LR, which is commonly used in medi-
cal literature and well understood by clinicians. We also used
RF and XGBoost, which are good options for our sparse data
based on a single time point with the added benefit of being
easier to interpret.

After data normalization, the entire cohort of patients was
Case 1: 43,798 (hyperkalemia:1,048), Case 2: 83,565 (hy-
perkalemia:1,821). Random shuffling and splitting were re-
peated for the training (60%) and test (40%) sets to evaluate
stability using k-fold cross validation (k=4). Models were
trained with balancing the class frequency, and parameters
(number of estimators and maximum depth of trees) were
chosen based on convergence of error rates. The Area un-
der the curve (AUC)s of the receiver operating curve (ROC)
were used to assess the performance of LR, RF, and XG-
Boost over different lead times for the test sets across the
scenarios. The importance of features in this project is inter-
preted with local model-agnostic SHAP (SHapley Additive
exPlanation) values (Lundberg and Lee 2017). SHAP values
attribute to each feature the change in the expected model
prediction when conditioning on that feature. The baseline
characteristics of each cohort are shown in Appendix Table
3.

Table 1: Model performance (AUC) comparison for machine
learning classifiers.; LR, Logistic Regression; RF, Random
Forest; XGB, XGBoost; Testdate, Test set-up date; AUC,
area under the curve.

Testdate Model AKI Cohort General Cohort
(Case 1) (Case 2)

1st∼14th LR 0.79 (0.77−0.81) 0.81 (0.80−0.82)
RF 0.81 (0.80−0.82) 0.85 (0.84−0.85)

XGB 0.81 (0.79−0.82) 0.85 (0.85−0.86)
2nd∼14th LR 0.75 (0.74−0.76) 0.72 (0.71−0.74)

RF 0.78 (0.77−0.79) 0.80 (0.79−0.81)
XGB 0.78 (0.76−0.79) 0.80 (0.78−0.81)

3rd∼14th LR 0.70 (0.69−0.72) 0.71 (0.70−0.72)
RF 0.73 (0.72−0.74) 0.80 (0.79−0.81)

XGB 0.73 (0.72−0.74) 0.80 (0.78−0.81)
4th∼14th LR 0.70 (0.69−0.71) 0.72 (0.71−0.73)

RF 0.74 (0.71−0.76) 0.80 (0.78−0.82)
XGB 0.73 (0.70−0.75) 0.80 (0.78−0.82)

Figure 1: Model performance (AUC) comparison for ma-
chine learning classifiers.; LR, Logistic Regression; RF,
Random Forest; AUC, area under the curve.



Results
LR had AUC 0.79 (95% Confidence Interval: 0.77−0.81)
for Case 1 (AKI cohort) and 0.81 (0.80−0.82) for Case
2 (general cohort) with the test set-up date which is 1st
to 14th day from ICU admission. RF and XGBoost per-
formed better with AUC 0.81 (0.80−0.82, 0.79−0.82) and
0.85 (0.84−0.85, 0.85−0.86) for Case 1 and Case 2 with
the same test date range (See Table 1, Figure 1). The perfor-
mance of RF and XGBoost in Case 2 is consistently higher
than models in Case 1. In addition, performance decreased
in both cases when hyperkalemia occurred later in the hos-
pitalization. AUC was reduced over time in both scenarios.

We ran our models with and without the AKI stage as
a feature, and found that all of our models were in close
agreement. Analysis of feature importance is shown in Fig-
ure 2. Top features in RF and XGBoost models in both clini-
cal cases include high phosphate, high admission potassium,
high fluid balance, and vasopressor use. In addition, AKI
stage was also an important feature in Case 2.

Figure 2: Top 10 SHAP values from RF and XGBoost
for Case 1 and 2. (a) RF(Case1) (b) XGBoost(Case1) (c)
RF(Case2) (d) XGBoost(Case2)

Discussion
Using MIMIC and eICU-CRD, we built models that may be
used to predict risk of hyperkalemia in critically ill patients
with and without AKI. The models require parameters from
the first day in the ICU to predict development of hyper-
kalemia within the first two weeks from admission.

In both clinical scenarios, the performance of our RF and
XGBoost models decreased with increasing intervals from
admission time. This is likely due to the relatively longer
duration of forward prediction compared to using only ad-
mission parameters for prediction, suggesting that data from
subsequent, time-varying clinical states after admission day
may be required to improve model prediction.

Top features in RF and XGBoost models in both clini-
cal cases include high phosphate, high admission potassium,
high fluid balance, and vasopressor use. Vasopressor use and
positive fluid balance is suggestive of hemodynamic insta-
bility and over aggressive volume resuscitation is associ-
ated with increased morbidity and mortality. Whilst these
patients had hemodynamic instability and aggressive vol-
ume resuscitation likely due to higher severity of illness, in-
terestingly that these factors remain important even when
AKI staging is featured in the model. More specifically, a
positive balance is associated with hyperkalemia. This sug-
gests treatment of shock with vasopressor and fluid therapy
may alter risk of hyperkalemia beyond that of AKI as part
of multiorgan dysfunction. For example, patients who re-
quire vasopressors for cardiogenic shock due to heart fail-
ure will usually be given diuretics to achieve negative fluid
balance and eliminate potassium through the urine, whereas
patients with hemodynamically unstable patients (ex. sep-
tic patients) often require fluid loading to improve cardiac
output. In contrast, high serum phosphate and serum potas-
sium levels on admission suggest renal dysfunction prior to
admission since the kidney is largely responsible for reg-
ulating both. High phosphate is often seen in chronic kid-
ney disease, which can impair the kidney’s ability to excrete
potassium even in the absence of AKI.

The AKI stage is not important in Case 1, where all pa-
tients have AKI, but it is important in Case 2. This could
mean that AKI, regardless of stage, increases risk of hyper-
kalemia, but the difference in AKI stage does not have a
large impact on risk of hyperkalemia. There are many po-
tential reasons for this, including small cohort size and the
KDIGO definition of AKI severity (Ostermann et al. 2020).
This requires further investigation and confirmation using
larger datasets.

Medications have been shown to have strong associa-
tions with hyperkalemia, but this was not the case for
our study (Khanagavi et al. 2014; Nyirenda et al. 2009;
Uijtendaal et al. 2011). This could potentially be due to the
severity of illness in the ICU population and the existence of
other powerful causes of hyperkalemia.

As emphasized in a recent commentary (Futoma et al.
2020), a deeper understanding of the patterns discovered in
clinical datasets to infer causation is necessary prior to adop-
tion rather than simply evaluating algorithms on multiple
datasets. In addition, an algorithm requires validation and
re-calibration using local data before implementation; gen-
eralizability should never be inferred. We used multicenter
datasets to create a large patient cohort of more than 83,000
patients and minimize overfitting by using broad inclusion
criterias. The models might help elucidate causes of hyper-
kalemia in the ICU, especially those that are actionable.

Conclusion
We developed models to predict hyperkalemia in critically
ill patients, with a focus on applicability to various clin-
ical scenarios and interpretability. We used multi-center
databases, compared multiple models optimized for inter-
pretability, and performed sensitivity analyses using multi-
ple use cases.
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Appendix

Figure 3: Data timeframe for predicting hyperkalemia. (a)
Case1 (b) Case2



Table 2: List of medications

Variable Category Medications

med ace yn ACEi/ARB benazepril, monopril, captopril, enalapril,
enalaprilat, lisinopril, moexipril, quinapril,
ramipril, trandolapril, valsartan,
losartan, irbesartan

med loop yn Loop/Thiazide Diuretics torsemide, furosemide, chlorothiazide,
indapamide, hydrochlorothiazide

med nsaid yn NSAID celecoxib, celebrex, diclofenac, ibuprofen,
indomethacin, ketorolac + toradol,
naproxen

med beta yn Beta Blockers carvedilol, esmolol, metoprolol, nadolol,
propranolol, sotalol, acebutolol, atenolol,
bisoprolol

med steroids yn Steroids hydrocortisone na succ., methylprednisolone,
prednisone

med beta ag yn Beta Agonist albuterol, salmeterol, levalbuterol
med k sparing yn K sparing Diuretics spironolactone, amiloride
med carbonic yn Carbonic Anhydrase acetazolamide, methazolamide

Inhibitors
med dig yn Digoxin
med hep yn Heparin
med pot chl yn Potassium Chloride
med succ yn Succinylcholine
med ins yn Insulin
med sod bic yn Sodium Bicarbonate
med cal yn Calcium Gluconate
med nitrog yn Nitroglycerin
med labet yn Labetalol
med vasop yn Vasopressor vasopressin, dopamine, phenylephrine,

epinephrine, norepinephrine



Table 3: Baseline characteristics; All values are expressed in the median and interquartile ranges unless specified; HyperK,
Hyperkalemia; CKD, Chronic Kidney Disease; Comorbidities, Baseline Comorbidities; COPD, Chronic Obstructive Pulmonary
Disease; SOFA, sequential organ function assessment; CK, Creatinine Kinase; Potassium, Admission potassium; Dialysis, Any
form of renal replacement therapy during ICU stay; LOS, Length of Stay.

AKI Cohort (Case 1) General Cohort (Case 2)
n=43,798 n=83,565

HyperK Non-HyperK HyperK Non-HyperK
n=1,048 n=42,750 n=1,821 n=81,744

Age (years) 64 (52.1-74.8) 66 (55-76.3) 64 (53-89) 64 (52-75)
Male (%) 672 (64.1%) 24,442 (57.2%) 1,205 (66.2%) 46,160 (56.5%)
SOFA score 8 (5-11) 4 (2-7) 6 (4-9) 3 (2-6)
Comorbidities
CKD (%) 203 (19.4) 4,256 (10.0) 297 (16.3) 6,074 (7.4)
COPD (%) 96 (9.2) 3,945 (9.2) 156 (8.6) 6,129 (7.5)
Diabetes (%) 172 (16.4) 6,307(14.8) 314 (17.2) 10,876 (13.3)
Hypertension (%) 169 (16.1) 10,272 (24.0) 368 (20.2) 16,937 (20.7)
Stroke (%) 26 (2.5) 1,489 (3.5) 43 (2.4) 3,012 (3.7)

Specialty
Medical (%) 582 (55.5) 23,029 (53.9) 784 (43.1) 41,518 (50.8)
Surgery (%) 356 (34.0) 14,321 (33.5) 860 (47.2) 27,257 (33.3)
Others (%) 110 (10.5) 5,400 (12.6) 177 (9.7) 12,969 (15.9)

CK (U/L) 245 (83-1,125) 150 (67-447) 231 (84-939) 146 (68-434)
Creatinine (mg/dL) 1 (0.7–1.5) 1 (0.7–1.4) 0.9 (0.7-1.3) 0.9 (0.7-1.3)
Phosphate (mg/dL) 4.5 (3.4-6.1) 3.5 (2.8-4.2) 4.1 (3.2-5.3) 3.4 (2.7-4)
Potassium (mEq/L) 4.5 (3.9-5.2) 4.1 (3.7-4.5) 4.5 (0-1) 4.0 (0-2)
Calcium (mg/dL) 8.4 (7.8-8.9) 8.4 (7.8-8.9) 8.4 (7.9-8.9) 8.4 (7.9-8.9)
Vasopressor 564 (53.8%) 9,702 (22.7%) 820 (45.0%) 13,848 (16.9%)
Dialysis 433 (41.3%) 2,805 (6.6%) 478 (26.3%) 3,088 (3.8%)
ICU LOS (days) 3 (1-9) 2 (1-4) 3 (2-7) 1 (1-3)
Hospital mortality (%) 326 (31.1%) 3,366 (7.9%) 367 (20.2%) 4,532 (5.5%)


