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Abstract

Arrhythmia is a serious cardiovascular disease, and in recent
years, several artificial intelligence programs have been pro-
posed to automate the arrhythmia diagnosis process. How-
ever, most have not been verified on multiple datasets, and
they focus on single label diagnosis. What’s more concern-
ing, these models conduct arrhythmia diagnosis in a black-
box way, which prevents the cardiologists from trusting the
computed results. In this study, we propose a multi-label
arrhythmia classification algorithm that aims at addressing
the aforementioned issues. The developed methodology is
composed of three processes: selecting representation, gen-
erating features, and predicting outcomes. We developed a
cache-inspired method to select a 12-lead electrocardiograms
(ECG) heartbeat representation. Moreover, we devised a
physiologically interpretable feature generator for segmented
12-lead ECG signals. For multi-label arrhythmia classifica-
tion, we innovated an efficient arrhythmia outcome prediction
procedure that is adaptable to ECG data of variant lengths.
Our interpretable multi-label arrhythmia classifier was tested
on six publicly available ECG datasets with over 43,000 pa-
tients’ data, and our model shows the competitiveness with
the ranking in the top 7% of the PhysioNet Challenge 2020.

Introduction
Arrhythmia is a serious cardiovascular disease since it has
been reported to correlate with high prevalence and associ-
ated mortality (Benjamin et al. 2019). Different arrhythmia
types have different mechanisms and require the appropri-
ate interventions for successful treatments. To diagnose the
arrhythmia types, cardiologists rely on the usage of electro-
cardiograms (ECG). ECG records the electrical activity gen-
erated from the heart, and it has been an essential tool for
cardiologists to perform screening and diagnosing cardiac
electrical abnormalities (Kligfield et al. 2007).

To reduce the manual arrhythmia labeling effort in ECG,
several computer-aided-diagnosis (CAD) tools have been
proposed. For example, an ECG waveform-based machine
learning approach has been developed by Hsu and Cheng
(Hsu and Cheng 2020). A deep neural network CAD has
been proposed by Acharya et al. (Acharya et al. 2017).
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Although several CAD tools have been innovated, a vast
amount of them has not been verified on multiple datasets.
Another drawback of these CAD models is their power in
diagnosis - they focus on single-label diagnosis instead of
multi-label cardiac abnormalities identification. More seri-
ously, several arrhythmia CAD algorithms perform diagno-
sis in a black-box manner, which could possibly discour-
age the cardiologists from trusting the diagnosis made by
the CAD tools.

To develop an automated program that addresses the
aforementioned issues, we build an interpretable multi-label
arrhythmia classifier based on six ECG datasets and test our
model in the PhysioNet Challenge 2020, which is a com-
petition advocating automated, open-source approaches for
classifying multi-label cardiac abnormalities from 12-lead
ECGs (Perez Alday et al. 2020). We applied boosting clas-
sifier in our model to identify the cardiac abnormalities, and
we deliver the computational approach that contributes to:
• Formulating 12-lead ECG heartbeat representation
• Generating physiologically reasonable feature maps
• Making efficient cardiac abnormalities identification

Problem Statement
We formulate the composite arrhythmia types diagnosis pro-
cedure into solving a multi-label classification problem. In
the classification problem, the input is the 12-lead ECG data
of the patient; the output is the arrhythmia types diagnosed
from this patient; and our goal is to seek the medical trust-
worthy function that maps each input to the output.

For the sake of brevity, we introduce the following no-
tations. We denote the input as x with the dimension of
12 × T , in which T is the number of the time point data
in each ECG lead. For the input data sampling rate, we use
fs as the description. To describe the multi-label output, we
use a binary vector y of the size C × 1. Number C is equal
to the total types of arrhythmia to diagnose, which is 27 in
this study. We opt 0, 1 to represent the existence of the ar-
rhythmia types; 0 is for negative and 1 for positive. More
specifically, given the fact that normal rhythm is also one of
the output labels, there exists at least a 1 in every output y.
We symbolize the mapping from input x to output y as h.In
this study, we target at optimizing the mapping h, so that
y = h(x) and L1(y − ytrue) is minimized.



To quantitatively evaluate the classifier’s performance, we
adopt the multi-label arrhythmia scoring metric developed
by the experts et al. (Perez Alday et al. 2020). This metric
scores 100% to a perfect classifier, awards partial credit to
misdiagnoses of similar outcomes or treatments, and pun-
ishes the false alarm with a negative score. According to
Perez Alday et al., such scoring metric can truly reflect the
real clinical scenarios. The score of a classifier is expressed
as

S =
∑
i,j

wijaij ,

where weighting wij is developed by the cardiologists and
aij represents the correctness of the classifier. More specifi-
cally, weighting matrix W is defined as

wij =

{
1, i = j,

α, 0 ≤ α < 1 i 6= j,

and correctness aij is written as

aij =

{
1

|{yp∪cp}| , yi = 1 and cj = 1,

0, otherwise,

where subscript p denotes all the positive outcomes. The fi-
nal scoring metric is defined as

Smetric =
Sclassifier − Sinactive

Strue − Sinactive
,

in which the score Sinactive is computed as a classifier that
always predicts normal rhythm with all the other types neg-
ative. Our goal is to build an interpretable arrhythmia classi-
fier that maximizes the finalized score Smetric.

Arrhythmia Classification Model
Our model construction includes three steps: data process-
ing, feature generation, and model training. In data process-
ing step, we select the datasets for model training and per-
form signal processing on the raw ECG signals. In feature
generation, we devise a salience-based feature extraction al-
gorithm to generate features for arrhythmia classification. In
the last step, we train our model to learn the patterns of dif-
ferent arrhythmia types.

Data Processing
We have ECG data from six datasets across Asia, Europe,
and North America, and we select four out of six to include
in our model training process. The four selected datasets are
G12EC, CPSC, CPSC 2, and PTB-XL databases. For ev-
ery patient in each dataset, the ECG data has the dimen-
sion 12 × T , but some leads may have missing data with
all 0s. The dataset selection is based on the three reasons:
1) sample size, the four datasets represent the majority of
the cases; 2) data length, variant data length, from five sec-
onds to ten minutes, are lying within the chosen datasets; 3)
signal quality, the signal-to-noise ratio is relatively high in
these datasets.

We developed a heartbeat segmentation algorithm to
transform each patient’s raw ECG signal into one represen-
tative heartbeat data. Such algorithm consists of four steps:

Figure 1: Flowchart of training the proposed multi-label ar-
rhythmia classifier.

data cleaning, R-peak detection, heartbeat segmentation, and
representation selection. In Figure 1, we demonstrate the
raw and the processed 12-Lead ECG data.

First, we clean the raw ECG data with a Butterworth low-
pass filter and a smoothing function channel-wisely. The
Butterworth filter has an order of 12 and 50Hz cutoff fre-
quency. The smoothing function adopts the moving average
strategy with 10ms window.

In the second step, we detect the R-peaks in the cleaned
ECG data. Most R-peaks detection is carried out on Lead
II data using the famous Pan-Tompkins algorithm (Pan and
Tompkins 1985). Nevertheless, for the noisy ECG data, we
detect the R-peaks with the algorithm oriented for noisy
physiological data as mentioned in (Chang et al. 2019).

Subsequently, for each patient, we chop down every ECG
heartbeat into 1-second long frame and concatenate the
frames into a tensor. Every 1-second frame has the channel-



wise R-peak located at the center. Supposed that N number
of heartbeats is considered, then the tensor will have the di-
mension of 12× fs ×N .

Finally, we employ the clustering method and similarity
metric to select the representative one-second ECG heart-
beat. For each patient, we congregate the ECG frames into
at most three groups and recognize the frame lying within
the largest group as the representative.

The clustering approach is inspired by the cache updated
rule in (Smith 1982). At the beginning, we construct a cache
of three entries, and each entry contains five blocks. Next,
we follow the least-recently-used rule to update our cache,
which is a frequently utilized technique in computer archi-
tecture. We assign a newly visited ECG frame to an existing
cache block if the ECG frame has sufficiently high similar-
ity with the frames in the entry, or if there is an empty entry
to be filled with; otherwise, we move on to the next ECG
frame. Eventually, we select the block data that stores the
most recent ECG frame in the largest group as the represen-
tation.

As for the similarity metric, we borrow the structural sim-
ilarity index metric (SSIM) defined in (Wang et al. 2004). In
this work, we empirically set the SSIM threshold as 0.3 to
assign two ECG frames into the same group.

Feature Map Generation
We invented a novel physiology-inspired feature generator
that is able to efficiently produce the feature maps of an arbi-
trary ECG frame. We incorporate the knowledge of saliency
into our feature generation model to quantify the P-wave,
QRS-complex, and T-wave relevant geometry on two fea-
ture maps. One feature map renders the amplitude features,
while the other characterizes the timing information. We
present our amplitude and timing feature generation algo-
rithms [1,2] as follows: Both amplitude and timing gener-

Algorithm 1 Amplitude Feature Generation
Input: 1-second 12-Lead ECG Data, K
Output: Amplitude Feature Map Amp Map

Initialize Amp Map as a matrix of size 12×K
for ch = 1→ 12 do

x← ECG data of channel ch
P ← dx

dt = 0 // valleys and peaks in the data
Q← array of size |P | − 1
for i = 1→ |P | − 1 do

Q[i] = P [i+ 1]− P [i]
end for
M ← |Q|
I ← Indices of top K largest values in M
// I is in non-decreasing order
Amp Map[ch, :]← Q[I]

end for

ation algorithms take the 1-second 12-Lead ECG and the
assumed fiducial point number K as inputs, and output the
feature maps of size 12×K and 12× 2K, respectively. The
algorithms compute the features of each channel indepen-
dently, and then project them onto the output feature maps.

Algorithm 2 Timing Feature Generation
Input: 1-second 12-Lead ECG Data, fs, K
Output: Timing Feature Map Time Map

Initialize Time Map as a matrix of size 12× 2K
for ch = 1→ 12 do

Same procedure as Algorithm 1 until obtaining I
for i = 1→ K − 1 do

Time Map[ch, 2i− 1] = I[i+ 1]− I[i]
Time Map[ch, 2i] = k − I[i]
// I[i] < k ≤ I[i+ 1], k ← argminP − I[i]

end for
Time Map[ch, 2K − 1] = fs − I[K]
Time Map[ch, 2K] = k − I[K]
// I[K] < k ≤ fs, k ← argmin fs − I[i]

end for
Time Map← Time Map/fs

For the amplitude map, the salient magnitudes are assessed;
for the timing map, the durations between the salient points
are taken into account. Under the assumption of existing P,
Q, R, S, and T waves, we setK = 10 and exhibit an example
in Figure 1.

Model Training
We treat solving the multi-label classification problem as
training binary classifiers for each evaluated class (27 in to-
tal). Our heuristics are that each arrhythmia type bears its
own unique waveform and is reflected in our generated am-
plitude or timing maps. Based on the reasoning, we imple-
ment the experiments detailed in the next section to train the
binary classifiers for each evaluated class.

Experiments
We design three experiments to build the arrhythmia classi-
fier that gives rise to the best performance. The three exper-
iments are utilized to determine the ECG duration to select
a heartbeat representation, the features for each arrhythmia
type, and the right classification algorithm.

ECG Length: We experimented with different temporal
lengths of ECG data to generate the feature maps. If the ECG
data is too short, then the feature maps might not generate
the ECG patterns as expected; on the other hand, if the ECG
signal is lengthy, the feature maps might not capture all the
representative heartbeats. Therefore, we conducted the ex-
periments on ECG data of lengths from 5 seconds to 60 sec-
onds, with 5 seconds as the incremental time step.

Training Features: Four experiments are carried out for
feature selection: 1) amplitude feature; 2) timing feature; 3)
both. 4) processed ECG data. To be more specific, we utilize
not only the timing map but also the averaged heart rate and
heart rate variation as our timing features.

Training Models: Basic deep learning (DL) and machine
learning (ML) models are the candidates. Regarding DL
strategy, convolutional neural network (CNN) and recurrent
neural network (RNN) models are nominated. Referring to
CNN, we borrow the AlexNet architecture with the input
size being an image of 12 rows. As for RNN, we employ the



long-short term memory units with inputs having a dimen-
sion of 12. Concerning ML methods, the models examined
include support vector machine, logistic regression, boost-
ing, k-nearest neighbor, decision tree, and random forest.

To determine the best model for each evaluated class, we
run the five-fold cross-validation tests on all the designed ex-
periments. To address the underrepresented class issue, we
randomly pick the samples from the class that have larger
sample size to match the size of the smaller group. Further-
more, we also evaluate the performance of the classifier with
the hidden test cases in the PhysioNet Challenge 2020.

Results
In this section, we briefly describe the results of each desig-
nated experiment and the performance of the final classifier.

ECG Length: We found out that 20 seconds produced
the best representative ECG waveform. If the ECG length
is less than 20 seconds, we often extract bad representative
heartbeats in the dataset with low signal-to-noise ratio. Con-
versely, we neglect some representative ECG data if the cho-
sen ECG length is larger, especially in the ECG data longer
than one minute.

Based on our finding, we proposed such strategy: if the
ECG data is shorter than 20s, then we construct one rep-
resentative ECG following the procedure described in the
model building section and determine the existence of each
arrhythmia type by running through the best trained binary
classifiers of each class.

For data length exceeding 20s, we randomly select N
number of data segments to quantifyN representations. The
number N is computed by data length divided by 10 in sec-
onds, but it is capped at 100 (N ≤ 100). Furthermore, we
determine a patient having arrhythmia type by observing
≥ 10% positive labels, which was fine-tuned based on the
final scoring metric.

Training Features: We discovered that the timing-
deviated arrhythmia types showcase the best performance
with solely the timing features. Also, we found that the ab-
normal waveform-based arrhythmia types favor purely the
amplitude feature maps. Combining amplitude and timing
feature maps does not significantly improve the performance
of the classifiers. Moreover, we observed that processed
ECG data as features led to the serious data over-fitting is-
sue. The models using ECG data as inputs performed well
on the specific datasets but badly on the un-trained ones.

We considered the findings of the features interesting be-
cause they support the proposed feature generation algo-
rithm. The discovery possibly indicated that the physiologi-
cally reasonable features could describe the types of arrhyth-
mia diagnosed.

Training Models: We sought the adaptive boosting the
best multi-label arrhythmia classifier based on the ro-
bustness, generalization, and interpretability of the cross-
validation tests and the hidden test cases. DL methods are
inclined to over-fit the training data, and they performed ter-
ribly in the hidden cases. In addition, DL approaches favor
the processed ECG data than the generated features. Other
ML methods presented fairly good results with the feature
maps as inputs, yet not as good as the boosting algorithm.

Scoring Metrics: We exhibit the scores of the cross-
validation tests of each dataset and the hidden test cases in
Table 1 as defined in Problem Statement section. Judging
from the run-time, we show that our proposed model is com-
petitive (compared to other competitors’ models). Assessing
the scores, we believe that the proposed model has success-
fully learned the features since the weighting scores of the
cross-validation tests is similar to the official score.

Our arrhythmia classifier also showcases its competitive-
ness in the competition as elaborated in Table 2. In fact, we
rank in the top 7% with our model that bears physiologically
reasonable features computed from the ECG data.

Dataset Runtime (hr:min:sec) Smetric

CPSC ≈0:20:00 0.455
CPSC 2 ≈0:30:00 0.402
G12EC ≈1:00:00 0.456

PTB ≈0:10:00 -2.589
PTB-XL ≈ 1:30:00 0.173
INCART ≈ 0:30:00 0.340

Competition 1:55:00 0.406
Similar Data (Ours)

Competition 72:00:00 ≈0.3
Similar Data (Others’)

Table 1: Performance of the proposed model.

Model Smetric

Ours 0.244
Baseline -0.012

Averaged Teams 0.170 [-0.65 , 0.53]

Table 2: Final scores in the competition.

Conclusion & Future Work
We deliver an interpretable multi-label arrhythmia classifier
in this study. The classifier is built of our devised 12-Lead
ECG heartbeat segmentation and feature generation algo-
rithms. We demonstrate that different types of arrhythmia fa-
vor the corresponding physiological features, either the am-
plitude or the timing maps. We believe such features could
gain more confidence from the cardiologists to trust the de-
cisions made by our model. For future work, we aim at find-
ing the correlations between the feature maps and the corre-
sponding arrhythmia types.
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